بدائل البحث:
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
python pilot » method pilot (توسيع البحث)
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
python pilot » method pilot (توسيع البحث)
-
61
Testing Code for JcvPCA and JsvCRP.
منشور في 2025"…<p>This file contains the code that implements both metrics in python and apply them on a simulated dataset.…"
-
62
Data and code for: Automatic fish scale analysis
منشور في 2025"…</i></li></ul></li><li><b>README.txt</b> – detailed file explanations and usage instructions</li></ul><p dir="ltr">The full statistical analysis and visualization pipeline is implemented in R and hosted on GitHub:<br>https://github.com/Birdy332/Automatic-fish-scale-analysis-r-scripts</p><p dir="ltr"><br></p><p dir="ltr">All figures shown in the manuscript can be reproduced using these scripts and the datasets provided here.…"
-
63
-
64
Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations
منشور في 2025"…We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. …"
-
65
Code and data for reproducing the results in the original paper of DML-Geo
منشور في 2025"…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…"
-
66
Data sets and coding scripts for research on sensory processing in ADHD and ASD
منشور في 2025"…</p><h4>Contents</h4><p dir="ltr">The repository includes:</p><ul><li>Questionnaire data (ASRS, BAPQ)</li><li>Visual orientation discrimination thresholds (vertical and oblique)</li><li>Demographic variables (age, gender)</li><li>Clinical vs. non-clinical group labels</li><li>Propensity score matching files and reproducible Python code</li><li>JASP analysis files and outputs</li><li>Study documentation and methodological details</li></ul><p dir="ltr">These data support the study’s finding that ADHD and ASD show distinct sensory signatures: clinical ADHD was associated with reduced oblique sensitivity, while clinical ASD showed enhanced vertical discrimination relative to matched non-clinical controls. …"
-
67
Data files accompanying our PLoS One publication
منشور في 2025"…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…"
-
68
Overview of deep learning terminology.
منشور في 2024"…Training loops are implemented with the luz package. The geodl package provides utility functions for creating raster masks or labels from vector-based geospatial data and image chips and associated masks from larger files and extents. …"
-
69
Code for High-quality Human Activity Intensity Maps in China from 2000-2020
منشور في 2025"…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …"
-
70
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
منشور في 2025"…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …"
-
71
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
منشور في 2024"…Each lane includes 'geometry' and 'inter_id' attributes.</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …"
-
72
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
منشور في 2025"…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…"
-
73
Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving"
منشور في 2025"…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…"
-
74
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
منشور في 2024"…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
-
75
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
76
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
77
<b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b>
منشور في 2025"…The workflow was implemented in Google Earth Engine (JavaScript API) and replicated in Python notebooks (Jupyter/Kaggle) for reproducibility.…"
-
78
<b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b>
منشور في 2025"…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"
-
79
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
منشور في 2025"…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…"
-
80
Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files)
منشور في 2025"…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…"