Showing 81 - 100 results of 208 for search '(( python code implementation ) OR ( ((python time) OR (python files)) implementation ))', query time: 0.42s Refine Results
  1. 81

    Testing Code for JcvPCA and JsvCRP. by Océane Dubois (21989812)

    Published 2025
    “…<p>This file contains the code that implements both metrics in python and apply them on a simulated dataset.…”
  2. 82

    Data and code for: Automatic fish scale analysis by Christian Vogelmann (21646472)

    Published 2025
    “…</i></li></ul></li><li><b>README.txt</b> – detailed file explanations and usage instructions</li></ul><p dir="ltr">The full statistical analysis and visualization pipeline is implemented in R and hosted on GitHub:<br>https://github.com/Birdy332/Automatic-fish-scale-analysis-r-scripts</p><p dir="ltr"><br></p><p dir="ltr">All figures shown in the manuscript can be reproduced using these scripts and the datasets provided here.…”
  3. 83
  4. 84

    Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations by Sascha Mausenberger (22225772)

    Published 2025
    “…We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. …”
  5. 85

    Code and data for reproducing the results in the original paper of DML-Geo by Pengfei CHEN (8059976)

    Published 2025
    “…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
  6. 86

    Data sets and coding scripts for research on sensory processing in ADHD and ASD by Vesko Varbanov (9687029)

    Published 2025
    “…</p><h4>Contents</h4><p dir="ltr">The repository includes:</p><ul><li>Questionnaire data (ASRS, BAPQ)</li><li>Visual orientation discrimination thresholds (vertical and oblique)</li><li>Demographic variables (age, gender)</li><li>Clinical vs. non-clinical group labels</li><li>Propensity score matching files and reproducible Python code</li><li>JASP analysis files and outputs</li><li>Study documentation and methodological details</li></ul><p dir="ltr">These data support the study’s finding that ADHD and ASD show distinct sensory signatures: clinical ADHD was associated with reduced oblique sensitivity, while clinical ASD showed enhanced vertical discrimination relative to matched non-clinical controls. …”
  7. 87

    Data files accompanying our PLoS One publication by Peter Hinow (21810605)

    Published 2025
    “…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…”
  8. 88

    Overview of deep learning terminology. by Aaron E. Maxwell (8840882)

    Published 2024
    “…Training loops are implemented with the luz package. The geodl package provides utility functions for creating raster masks or labels from vector-based geospatial data and image chips and associated masks from larger files and extents. …”
  9. 89

    Code for High-quality Human Activity Intensity Maps in China from 2000-2020 by Wenqi Xie (18273238)

    Published 2025
    “…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …”
  10. 90

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  11. 91

    The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network" by Chongshan Wan (19247614)

    Published 2024
    “…Each lane includes 'geometry' and 'inter_id' attributes.</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …”
  12. 92

    Graphical abstract of HCAP. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  13. 93

    Recall analysis. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  14. 94

    Convergence rate analysis. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  15. 95

    Computational efficiency. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  16. 96

    Analysis of IoMT data sources. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  17. 97

    Prediction accuracy on varying attack types. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  18. 98

    <b> </b> Precision analysis. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  19. 99

    Impact of cyberattack types on IoMT devices. by Mohanad Faeq Ali (21354273)

    Published 2025
    “…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
  20. 100