Showing 161 - 180 results of 192 for search '(( python code implementation ) OR ( python ((time implementation) OR (proof implementation)) ))', query time: 0.51s Refine Results
  1. 161

    A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture by Nagarajan Kandasamy (8400168)

    Published 2025
    “…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
  2. 162

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx by Piyachat Udomwong (22563212)

    Published 2025
    “…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
  3. 163

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  4. 164

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  5. 165

    Computational performance analysis script. by Le Qi (8859521)

    Published 2025
    “…<p>Python implementation for computational performance evaluation and timing analysis.…”
  6. 166

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) by Wubin Ding (11823941)

    Published 2025
    “…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
  7. 167

    IGD-cyberbullying-detection-AI by Bryan James (19921044)

    Published 2024
    “…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
  8. 168

    Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr by Alfonso Ladino (21447002)

    Published 2025
    “…Our implementation shows processing time reductions of up to 210× compared to traditional workflows, even on standard hardware. …”
  9. 169

    Overview of generalized weighted averages. by Nobuhito Manome (8882084)

    Published 2025
    “…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
  10. 170

    Automatic data reduction for the typical astronomer by Bradford Holden (21789524)

    Published 2025
    “…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
  11. 171

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  12. 172

    Gene Editing using Transformer Architecture by Rishabh Garg (5261744)

    Published 2025
    “…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”
  13. 173

    Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning by Baptista Boanha (22424668)

    Published 2025
    “…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …”
  14. 174

    Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i> by Hao Chen (20313552)

    Published 2025
    “…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
  15. 175

    Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6 by Xiao-Xiao Wang (2447920)

    Published 2024
    “…Specifically, run this *.xml file using BEAST six times. Then, output of the six runs was combined and TreeAnnotator was used to summarize divergence time.…”
  16. 176

    CNG-ARCO-RADAR.pdf by Alfonso Ladino (21447002)

    Published 2025
    “…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …”
  17. 177

    Folder with all data and algorithms by Jorge Servert Lerdo de Tejada (22290001)

    Published 2025
    “…In this study, we present an open-source, Python-based computational framework that unifies photon transport modeling, probe geometry optimization, and photothermal safety assessment into a single workflow. …”
  18. 178

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …”
  19. 179

    Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository by Aaradhy Sharma (21503465)

    Published 2025
    “…It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”
  20. 180

    3D PD-Controlled Nanorobot Swarm Simulation for Targeted Cancer and BBB Therapy by Umar Tabbsum (22058780)

    Published 2025
    “…</p><p dir="ltr">Implemented in Python (NumPy, Matplotlib, 3D visualization), the framework is fully annotated and reproducible. …”