Showing 61 - 80 results of 287 for search '(( python code implementation ) OR ( python code presented ))', query time: 0.21s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67

    PyGMT – Accessing and Integrating GMT with Python and the Scientific Python Ecosystem (AGU24, U12B-05) by Yvonne Fröhlich (20442683)

    Published 2024
    “…</p><p dir="ltr">PyGMT (<a href="https://www.pygmt.org/" target="_blank">https://www.pygmt.org/</a>) wraps around the very fast GMT C code to make it accessible through the Python programming language. …”
  8. 68

    Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving" by Basem Ahmed (18127861)

    Published 2025
    “…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…”
  9. 69
  10. 70
  11. 71
  12. 72
  13. 73

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…”
  14. 74

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…”
  15. 75

    Datasets To EVAL. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”
  16. 76

    Statistical significance test results. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”
  17. 77

    How RAG work. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”
  18. 78

    OpenBookQA experimental results. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”
  19. 79

    AI2_ARC experimental results. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”
  20. 80

    TQA experimental results. by Jin Lu (428513)

    Published 2025
    “…<div><p>This paper presents a novel approach to enhancing educational question-answering (Q&A) systems by combining Retrieval-Augmented Generation (RAG) with Large Language Model (LLM) Code Interpreters. …”