Search alternatives:
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
code presented » model presented (Expand Search), side presented (Expand Search), order presented (Expand Search)
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
code presented » model presented (Expand Search), side presented (Expand Search), order presented (Expand Search)
-
161
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
162
Overview of generalized weighted averages.
Published 2025“…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
-
163
Probabilistic-QSR-GeoQA
Published 2024“…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …”
-
164
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
165
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
166
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
Published 2025“…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…”
-
167
Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning
Published 2025“…<p dir="ltr">This dataset and code package presents a modular framework for supervised classification of burned and unburned land surfaces using satellite-derived spectral reflectance. …”
-
168
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…”
-
169
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…<p dir="ltr">Contains</p><p dir="ltr">Final Analysis Output.xlsx: Current and reference concentrations of DRP, TP, NO3-N and TN along with pivot table analysis</p><p dir="ltr">Code: Python code used to implement the model in ArcGIS Pro.…”
-
170
SRL OF TIM
Published 2025“…</li><li><code><strong>plot_scripts/</strong></code>: Includes data files and Python scripts used to generate the visualizations presented in the review (e.g., bar charts, pie charts, distribution graphs).…”
-
171
<b>China’s naturally regenerated forests currently have greater aboveground carbon accumulation rates than newly planted forests</b>
Published 2025“…As well as, the Google earth engine code for detecting their ages and extents, python code for modelling the carbon accumulation rate of China’s PYF and NYF, python code for evaluating the influence of various factors on the patterns and differences in AGC accumulation rates between NYF and PYF in China.…”
-
172
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…Full source code and version details are available upon request.…”
-
173
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
Published 2025“…Includes imputation statistics, data dictionary, and the Python imputation code (Imputation_Air_Pollutants_NABEL.py). …”
-
174
MEG Dataset and Analysis Scripts for “The Effects of Task Similarity During Representation Learning in Brains and Neural Networks”
Published 2025“…</p><h3><b>Contents</b></h3><ul><li><b>MEG data</b> (results of the correlation between empirical and model matrices at different dimensionalities and domains)</li><li><b>Behavioral data</b> (behavioural accuracy performance: "Spatual Source Data")</li><li><b>Analysis script</b></li><li><b>Python package </b>developed to help with retrieving and computing simple operations</li></ul><h3><b>Data format</b></h3><p dir="ltr">Data are organized according to a structured folder layout (see <code>README.md</code> in the repository) and include:</p><ul><li><code>npy</code> MEG files (numpy)</li><li><code>.csv</code> behavioral files</li><li>Python scripts using MNE-Python for statistical analysis and visualization</li></ul><h3><b>Usage</b></h3><p dir="ltr">The provided scripts reproduce the statistical tests and figures presented in the manuscript. …”
-
175
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
Published 2025“…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
-
176
dataset
Published 2024“…<p dir="ltr">The R and Python code used to perform the analysis and generate the results and visualizations presented in the forest canopy height, and the related data and results produced in the research analyses.…”
-
177
Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet
Published 2025“…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…”
-
178
M-SGWR model
Published 2025“…The repo contains all the necessary information, including the python code "M-SGWR", datasets and the instruction of how to reproduce the results presented in the article. …”
-
179
Supporting data for "Optimisation of Trust in Collaborative Human-Machine Intelligence in Construction"
Published 2025“…The first folder contains Scopus-derived data alongside analytical results that substantiate the figures presented in Chapter 1. The second folder mirrors the structure of the first, encompassing Scopus data and Python source code used to generate the visualizations featured in Chapter 2. …”
-
180
<b>Algorithm Pseudocode</b>
Published 2025“…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”