يعرض 121 - 140 نتائج من 157 نتيجة بحث عن '(( python code implementation ) OR ( python first implemented ))', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 121

    face recognation with Flask حسب Muammar, SST, M.Kom (21435692)

    منشور في 2025
    "…Built using the <b>Flask</b> web framework (Python), this system provides a lightweight and scalable solution for implementing facial recognition capabilities in real-time or on-demand through a browser interface.…"
  2. 122

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) حسب Wubin Ding (11823941)

    منشور في 2025
    "…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…"
  3. 123

    IGD-cyberbullying-detection-AI حسب Bryan James (19921044)

    منشور في 2024
    "…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…"
  4. 124

    Overview of generalized weighted averages. حسب Nobuhito Manome (8882084)

    منشور في 2025
    "…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…"
  5. 125

    Automatic data reduction for the typical astronomer حسب Bradford Holden (21789524)

    منشور في 2025
    "…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …"
  6. 126

    Concurrent spin squeezing and field tracking with machine learning حسب Junlei Duan (18393642)

    منشور في 2025
    "…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …"
  7. 127

    Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif حسب Xiaobing Li (291454)

    منشور في 2025
    "…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …"
  8. 128

    Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif حسب Xiaobing Li (291454)

    منشور في 2025
    "…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …"
  9. 129

    Copy number contingency table. حسب Yang Wu (66682)

    منشور في 2025
    "…In summary, the PASO model suggests potential as a robust support in individualized cancer treatment. Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…"
  10. 130

    Gene mutation contingency table. حسب Yang Wu (66682)

    منشور في 2025
    "…In summary, the PASO model suggests potential as a robust support in individualized cancer treatment. Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…"
  11. 131

    Resistant & sensitive cell line Info on AZD5991. حسب Yang Wu (66682)

    منشور في 2025
    "…In summary, the PASO model suggests potential as a robust support in individualized cancer treatment. Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…"
  12. 132

    Resistant & sensitive drug info on COLO800. حسب Yang Wu (66682)

    منشور في 2025
    "…In summary, the PASO model suggests potential as a robust support in individualized cancer treatment. Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…"
  13. 133

    MCCN Case Study 3 - Select optimal survey locality حسب Donald Hobern (21435904)

    منشور في 2025
    "…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…"
  14. 134

    Gene Editing using Transformer Architecture حسب Rishabh Garg (5261744)

    منشور في 2025
    "…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …"
  15. 135

    Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning حسب Baptista Boanha (22424668)

    منشور في 2025
    "…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …"
  16. 136

    Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil) حسب Amanda Bueno de Moraes (22559249)

    منشور في 2025
    "…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …"
  17. 137

    Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples حسب Derek Lam (11944213)

    منشور في 2025
    "…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
  18. 138

    Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i> حسب Hao Chen (20313552)

    منشور في 2025
    "…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…"
  19. 139

    Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6 حسب Xiao-Xiao Wang (2447920)

    منشور في 2024
    "…Calculate the concordant/conflicting bipartitions and internode certainty all (ICA) using PhyParts (Supplementary Fig. 3).</p><p dir="ltr">First, root 857 ortholog trees using script <a href="https://bitbucket.org/dfmoralesb/target_enrichment_orthology/src/master/scripts/root_trees_multiple_outgroups_MO.py" target="_self">root_trees_multiple_outgroups_MO.py</a> accessed from https://bitbucket.org/dfmoralesb/target_enrichment_orthology/src/master/scripts/</p><p dir="ltr"><i>python2 root_trees_multiple_outgroups_MO.py DIR_includes_the_857_ortholog_trees tree_file_ending output_DIR a_list_includes_names_of_outgroups</i></p><p dir="ltr">Next, execute PhyParts.…"
  20. 140

    Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789 حسب Jordan Waters (21620558)

    منشور في 2025
    "…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …"