يعرض 201 - 220 نتائج من 254 نتيجة بحث عن '(( python code implementation ) OR ( python model representing ))', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 201

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis حسب Alan Glanz (22109698)

    منشور في 2025
    "…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…"
  2. 202

    face recognation with Flask حسب Muammar, SST, M.Kom (21435692)

    منشور في 2025
    "…Built using the <b>Flask</b> web framework (Python), this system provides a lightweight and scalable solution for implementing facial recognition capabilities in real-time or on-demand through a browser interface.…"
  3. 203

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) حسب Wubin Ding (11823941)

    منشور في 2025
    "…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…"
  4. 204

    IGD-cyberbullying-detection-AI حسب Bryan James (19921044)

    منشور في 2024
    "…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…"
  5. 205

    Automatic data reduction for the typical astronomer حسب Bradford Holden (21789524)

    منشور في 2025
    "…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …"
  6. 206

    Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet حسب Kang Yang (7323734)

    منشور في 2025
    "…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…"
  7. 207

    Concurrent spin squeezing and field tracking with machine learning حسب Junlei Duan (18393642)

    منشور في 2025
    "…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …"
  8. 208

    Image 1_An explainable analysis of depression status and influencing factors among nursing students.png حسب Yingying Li (50341)

    منشور في 2025
    "…Data cleaning was performed in Excel, and statistical analyses were conducted using SPSS Statistics version 27.0 and Python 3.9.</p>Results<p>The incidence of depression among nursing students is 28.60%. …"
  9. 209

    <b>IEEE 14 bus test systems row data </b> حسب meysam shahriyari (22599314)

    منشور في 2025
    "…Each row in the dataset represents one simulated case, and each column corresponds to an input feature used in the deep learning model.…"
  10. 210

    Indirect Reciprocity and the Evolution of Prejudicial Groups حسب Gualtiero Colombo (19078925)

    منشور في 2024
    "…This is conducted through an agent based model over a population of agents that interact through a `donation game' in which resources are donated to third parties at a cost without receiving a direct benefit. …"
  11. 211

    Summary of Tourism Dataset. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  12. 212

    Segment-wise Spending Analysis. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  13. 213

    Hyperparameter Parameter Setting. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  14. 214

    Marketing Campaign Analysis. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  15. 215

    Visitor Segmentation Validation Accuracy. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  16. 216

    Integration of VAE and RNN Architecture. حسب Jing Zhang (23775)

    منشور في 2025
    "…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
  17. 217

    6. Motif Code Theory حسب William Terry (22279591)

    منشور في 2025
    "…<p dir="ltr">The Motif Code Theory (MCT) simulation code, mct_unified_code.py, is a Python 3.9 script that models the universe as a time-dependent directed multigraph G(t) = (V(t), E(t)) with N=10^7 vertices (representing quantum fields/particles) and edges (interactions). …"
  18. 218

    Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems حسب Lakshit Mathur (20894549)

    منشور في 2025
    "…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…"
  19. 219

    Gene Editing using Transformer Architecture حسب Rishabh Garg (5261744)

    منشور في 2025
    "…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …"
  20. 220

    Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning حسب Baptista Boanha (22424668)

    منشور في 2025
    "…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …"