بدائل البحث:
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
representing » represent (توسيع البحث), represents (توسيع البحث)
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
representing » represent (توسيع البحث), represents (توسيع البحث)
-
221
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
منشور في 2025"…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …"
-
222
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
منشور في 2025"…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…"
-
223
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
منشور في 2025"…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …"
-
224
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
منشور في 2025"…Full source code and version details are available upon request.…"
-
225
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …"
-
226
Improving the calibration of an integrated CA-What If? digital planning framework
منشور في 2025"…planning support system (PSS) sub-model to generate and analyse three representative built-up development scenarios. …"
-
227
Datasets from the Programmatic Analysis of Fuel Treatments: from the landscape to the national level Joint Fire Science Project (14-5-01-1)
منشور في 2025"…Included for each study site are individual rasters representing the fire affected resources for that study site. …"
-
228
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
منشور في 2025"…Includes imputation statistics, data dictionary, and the Python imputation code (Imputation_Air_Pollutants_NABEL.py). …"
-
229
<b>Data and Code from 'The Perfect and Legitimate Bribe': A Transparent Record of Human-AI Collaboration in Legal Scholarship</b>
منشور في 2025"…</p><p dir="ltr">For optimal viewing of `collated-anonymized.txt`, a text editor that can handle long lines without word wrapping is recommended to preserve the indentation that represents the conversational branching structure.</p><p><br></p><p dir="ltr">### **Running Code/Software**</p><p dir="ltr">The provided scripts (`collator-ipynb.txt` and `sentence-ancestry-ipynb.txt`) are Jupyter Notebooks and require a Python 3 environment to run. …"
-
230
End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting
منشور في 2025"…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …"
-
231
Hierarchical Deep Learning Framework for Automated Marine Vegetation and Fauna Analysis Using ROV Video Data
منشور في 2024"…</p><ol><li><b>MaskRCNN-Segmented Objects</b>:</li></ol><p dir="ltr"> - `.jpg` files representing segmented objects detected by the MaskRCNN model.…"
-
232
Supplementary Material for: The prediction of hematoma growth in acute intracerebral hemorrhage: from 2-dimensional shape to 3-dimensional morphology
منشور في 2025"…We subsequently constructed the 3-dimensional morphology models, including the probability of hematoma morphology (PHM) and the probability of comprehensive model (PCM), to predict HG. …"
-
233
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
منشور في 2025"…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …"
-
234
Audio Datasets of belt conveyor rollers in mines
منشور في 2024"…Combined with machine learning models, this dataset can be used for real-time diagnosis of roller operational states. …"
-
235
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…Analysis of the confusion matrix revealed a critical limitation: although the model correctly identified 785 poisonous mushrooms, it misclassified 313 as edible (false negatives), which represents an unacceptable risk in a practical application.…"
-
236
Machine Learning-Driven Discovery and Database of Cyanobacteria Bioactive Compounds: A Resource for Therapeutics and Bioremediation
منشور في 2024"…The biochemical descriptors were then used to determine the most promising protein targets for human therapeutic approaches and environmental bioremediation using the best machine learning (ML) model. The creation of our database, coupled with the integration of computational docking protocols, represents an innovative approach to understanding the potential of cyanobacteria bioactive compounds. …"
-
237
Data files accompanying our PLoS One publication
منشور في 2025"…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…"
-
238
Bacterial persistence modulates the speed, magnitude and onset of antibiotic resistance evolution
منشور في 2025"…</p><p dir="ltr">Repository structure</p><p dir="ltr">Fig_1/</p><ul><li>Probability of emergence analysis</li><li>Fig_1.py: contour plot generation</li></ul><p dir="ltr">Fig_2/</p><ul><li>MIC evolution simulations</li><li>Fig_2_a/: R-based simulation analysis</li><li>Fig_2_b/: Python visualization</li><li>Fig_2_c/: speed of resistance evolution analysis</li><li>Fig_2_d/: time to resistance analysis</li></ul><p dir="ltr">Fig_3/</p><ul><li>Distribution analysis</li><li>Fig_3_a-b.R: density plots and bar charts (empirical and simulated)</li></ul><p dir="ltr">Fig_4/</p><ul><li>Mutation analysis</li><li>Fig_4_a-b/: mutation counting analysis</li><li><ul><li>Fig_4_a/: simulation data (sim)</li><li>Fig_4_b/: empirical data (emp)</li></ul></li><li>Fig_4_c/: gene ontology and functional analysis</li></ul><p dir="ltr">Fig_5/</p><ul><li>Large-scale evolutionary simulations</li><li>Fig_5_a-b/: heatmap visualizations</li><li>Fig_5_c/: MIC and extinction analysis (empirical)</li></ul><p dir="ltr">Fig_6/</p><ul><li>Population size effects</li><li>Fig_6.py: population size analysis simulations</li></ul><p dir="ltr">S1_figure/</p><ul><li>Supplementary experimental data</li></ul><p dir="ltr">S2_figure/</p><ul><li>Supplementary frequency analysis</li></ul><p dir="ltr">S3_figure/</p><ul><li>Supplementary probability analysis</li></ul><p dir="ltr">scripts_simulations_cluster/</p><ul><li>Large-scale, cluster-optimized simulations</li></ul><p dir="ltr">complete_data/</p><ul><li>Reference to the full data sheet (full data set deposited elsewhere)</li></ul><p dir="ltr">Script types and languages</p><p dir="ltr">Python scripts (.py)</p><ul><li>Mathematical modeling: survival functions, probability calculations</li><li>Stochastic simulations: tau-leaping population dynamics</li><li>Data processing: mutation analysis, frequency calculations</li><li>Visualization: plotting with matplotlib and seaborn</li><li>Typical dependencies: numpy, pandas, matplotlib, seaborn, scipy</li></ul><p dir="ltr">R scripts (.R)</p><ul><li>Statistical analysis: distribution fitting, density plots</li><li>Advanced visualization: publication-quality figures (ggplot2)</li><li>Data manipulation: dplyr / tidyr workflows</li><li>Typical dependencies: dplyr, tidyr, ggplot2, readxl, cowplot</li></ul><p dir="ltr">Data requirements</p><p dir="ltr">The scripts are designed to run using the complete_data.xlsx file and, where relevant, the raw simulation outputs and empirical data sets as described above. …"
-
239
Social media images of China's terraces
منشور في 2025"…Geo-tagged images were collected using Weibo cookies and Python-based scraping tools (available at: https://github.com/dataabc/weibo-search). …"
-
240
Code and parameter package for long-term mapping and object-based typing of freeze–thaw colluvial deposits (1990–2024) along the Yunnan–Tibet corridor
منشور في 2025"…Tested with Python 3.x/ArcGIS Pro (ArcPy) and the GEE Code Editor. …"