Search alternatives:
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
-
81
Comparison data 7 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
82
Sample data for <i>Neolamprologus multifasciatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
83
Sample data for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
84
Comparison data 3 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
85
Sample data for <i>Telmatochromis temporalis</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
86
Comparison data 4 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
87
Comparison data 1 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
88
Comparison data 2 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
89
Comparison data 5 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
90
Comparison data 6 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
91
Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning
Published 2025“…<p dir="ltr">This dataset and code package presents a modular framework for supervised classification of burned and unburned land surfaces using satellite-derived spectral reflectance. …”
-
92
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…”
-
93
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…<p dir="ltr">Contains</p><p dir="ltr">Final Analysis Output.xlsx: Current and reference concentrations of DRP, TP, NO3-N and TN along with pivot table analysis</p><p dir="ltr">Code: Python code used to implement the model in ArcGIS Pro.…”
-
94
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
Published 2025“…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
-
95
Soulware-Lite
Published 2025“…</p><p><br></p><p dir="ltr">The system is fully modular, built on Python + FastAPI, and integrated with Streamlit UI for visualizing alignment confidence and drift flags. …”
-
96
<b>Algorithm Pseudocode</b>
Published 2025“…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
-
97
<b>Anonymous, runnable artifact for </b><b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints: A Problem‑Driven Multi‑Layer Approach</b>
Published 2025“…</b> The anonymized archive includes a dependency‑free Python implementation of all five layers (oracle, coverage, drift mapping, prioritization, resource scheduling), an orchestrator, and synthetic datasets with 50 test cases per sub‑application (LLM assistant, retrieval with citation, vision calories, notification/social). …”
-
98
HCC Evaluation Dataset and Results
Published 2024“…The only requirement for running this script is a Python 3.6+ interpreter as well as an installation of the <code>numpy</code> package. …”
-
99
Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space
Published 2025“…</p><h3>Requirements</h3><ul><li>Python 3.7</li><li>PyTorch 1.10.0 & CUDA 11.8</li></ul><h3>Main Result Running commands:</h3><p dir="ltr">Execute <code>.sh: bash .…”
-
100
Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas
Published 2025“…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”