Showing 81 - 100 results of 171 for search '(( python code implementation ) OR ( python tool representing ))', query time: 0.25s Refine Results
  1. 81

    Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving" by Basem Ahmed (18127861)

    Published 2025
    “…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…”
  2. 82

    Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats by Raul MATSUSHITA (10276562)

    Published 2024
    “…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …”
  3. 83

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…”
  4. 84

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…”
  5. 85

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> by Pajtim Zariqi (22155799)

    Published 2025
    “…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…”
  6. 86

    <b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b> by Marly G F Costa (19812192)

    Published 2025
    “…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …”
  7. 87

    Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b> by Zhou (20184816)

    Published 2025
    “…Attached is the micro-emotion annotation code based on pytorch, which can be used to annotate the Goemotions dataset by yourself, or predict the emotion classification based on the annotation results. …”
  8. 88

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
  9. 89

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
  10. 90

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
  11. 91

    High-Throughput Mass Spectral Library Searching of Small Molecules in R with NIST MSPepSearch by Andrey Samokhin (20282728)

    Published 2025
    “…Despite the availability of numerous library search algorithms, those developed by NIST and implemented in MS Search remain predominant, partly because commercial databases (e.g., NIST, Wiley) are distributed in proprietary formats inaccessible to custom code. …”
  12. 92

    Comparison data 7 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  13. 93

    Sample data for <i>Neolamprologus multifasciatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  14. 94

    Sample data for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  15. 95

    Comparison data 3 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  16. 96

    Sample data for <i>Telmatochromis temporalis</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  17. 97

    Comparison data 4 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  18. 98

    Comparison data 1 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  19. 99

    Comparison data 2 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  20. 100

    Comparison data 5 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”