بدائل البحث:
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
tool representing » model representing (توسيع البحث), thus representing (توسيع البحث), plot representing (توسيع البحث)
code implementation » model implementation (توسيع البحث), time implementation (توسيع البحث), world implementation (توسيع البحث)
tool representing » model representing (توسيع البحث), thus representing (توسيع البحث), plot representing (توسيع البحث)
-
141
IGD-cyberbullying-detection-AI
منشور في 2024"…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…"
-
142
Overview of generalized weighted averages.
منشور في 2025"…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…"
-
143
Automatic data reduction for the typical astronomer
منشور في 2025"…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …"
-
144
Concurrent spin squeezing and field tracking with machine learning
منشور في 2025"…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …"
-
145
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
منشور في 2025"…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…"
-
146
Gene Editing using Transformer Architecture
منشور في 2025"…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …"
-
147
Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning
منشور في 2025"…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …"
-
148
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
منشور في 2025"…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …"
-
149
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
منشور في 2025"…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…"
-
150
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
منشور في 2025"…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …"
-
151
End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting
منشور في 2025"…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …"
-
152
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …"
-
153
Missing and Unaccounted-for People in Mexico (1960s–2025)
منشور في 2025"…</li><li><b>Requirements File:</b> A <code>requirements.txt</code> file listing the necessary Python libraries to run the script seamlessly.</li></ol><p dir="ltr">This dataset and accompanying tools aim to support researchers, policymakers, and journalists in analyzing and addressing the issue of missing persons in Mexico.…"
-
154
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
منشور في 2025"…Includes imputation statistics, data dictionary, and the Python imputation code (Imputation_Air_Pollutants_NABEL.py). …"
-
155
CpG Signature Profiling and Heatmap Visualization of SARS-CoV Genomes: Tracing the Genomic Divergence From SARS-CoV (2003) to SARS-CoV-2 (2019)
منشور في 2025"…Heatmap Generation</p><p dir="ltr">Tools :</p><p dir="ltr">Heatmaps were generated using Python's seaborn library (sns.heatmap) and matplotlib for visualization.…"
-
156
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
منشور في 2025"…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …"
-
157
PepENS
منشور في 2025"…To run the tool, execute the script PepENS_user.py (located in the Dataset1 directory). …"
-
158
Environmental Census: Modeling Synthetic Biology Ecological Risk with Metagenomic Enzymatic Data and High-Performance Computing
منشور في 2025"…Improved predictive computational tools are necessary to assess the potential establishment risk and environmental location of these escaped engineered microorganisms, assisting their design and management. …"
-
159
Exploring post-wildfire hydrologic response in central Colorado using field observations and the Landlab modeling framework
منشور في 2024"…Landlab, an open-source, componentized model written in Python, can be used to explore landscape evolution across both short and long time scales. …"
-
160
<b>Dataset for manuscript: </b><b>Phylogenetic and genomic insights into the evolution of terpenoid biosynthesis genes in diverse plant lineages</b>
منشور في 2025"…It is run directly in the command: python3 cdhit.py </p><p dir="ltr"> This script is designed to remove redundant sequences using the CD-HIT tool.…"