Showing 121 - 140 results of 167 for search '(( python code implementing ) OR ( python after implementing ))', query time: 0.30s Refine Results
  1. 121

    HCC Evaluation Dataset and Results by Jens-Rene Giesen (18461928)

    Published 2024
    “…The only requirement for running this script is a Python 3.6+ interpreter as well as an installation of the <code>numpy</code> package. …”
  2. 122

    RabbitSketch by tong zhang (20852432)

    Published 2025
    “…RabbitSketch achieves significant speedups compared to existing implementations, ranging from 2.30x to 49.55x.In addition, we provide flexible and easy-to-use interfaces for both Python and C++. …”
  3. 123

    A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification by Mohammed Nasser Al-Andoli (21431681)

    Published 2025
    “…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
  4. 124

    Recursive generation of substructures using point data by Jackie R (18359715)

    Published 2025
    “…<p dir="ltr">The dataset contains generated substructure using POI in China, the pseudo code for the algorithm and python implement of the algorithm. …”
  5. 125

    Demonstration of Isosteric Heat of Adsorption Calculation using AIFs and pyGAPs by Jack Evans (11275386)

    Published 2025
    “…</p><p dir="ltr">The calculation is performed using the Clausius-Clapeyron method as implemented in the <code><strong>pyGAPS</strong></code> Python library for adsorption science. …”
  6. 126

    <b>Algorithm Pseudocode</b> by Yibin Zhao (22425801)

    Published 2025
    “…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
  7. 127

    <b>Anonymous, runnable artifact for </b><b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints: A Problem‑Driven Multi‑Layer Approach</b> by Nariman Mani (21380459)

    Published 2025
    “…</b> The anonymized archive includes a dependency‑free Python implementation of all five layers (oracle, coverage, drift mapping, prioritization, resource scheduling), an orchestrator, and synthetic datasets with 50 test cases per sub‑application (LLM assistant, retrieval with citation, vision calories, notification/social). …”
  8. 128

    <b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints</b> by Nariman Mani (21380459)

    Published 2025
    “…<ul><li>A <b>Python repo</b> with minimal implementations of all five layers<br>(<b>COL</b>, <b>SCL</b>, <b>CDM</b>, <b>RPE</b>, <b>RAS</b>) plus an <b>orchestrator</b> and utilities.…”
  9. 129

    Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space by chenchen Guo (21327470)

    Published 2025
    “…</p><h3>Requirements</h3><ul><li>Python 3.7</li><li>PyTorch 1.10.0 & CUDA 11.8</li></ul><h3>Main Result Running commands:</h3><p dir="ltr">Execute <code>.sh: bash .…”
  10. 130

    adnus by Mehmet Keçeci (14301782)

    Published 2025
    “…<p dir="ltr">adnus (AdNuS): Advanced Number Systems</p><p dir="ltr">adnus is a Python library that provides an implementation of various advanced number systems. …”
  11. 131

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  12. 132

    MSc Personalised Medicine at Ulster University by Steven Watterson (100045)

    Published 2025
    “…</b> Introducing computational approaches to studying genes, proteins or metabolites, this module teaches Python coding, data analysis and how to work with the databases that support data analysis.…”
  13. 133

    Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas by Pedro Cabral (18947566)

    Published 2025
    “…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”
  14. 134

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  15. 135

    kececilayout by Mehmet Keçeci (14301782)

    Published 2025
    “…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”
  16. 136

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) by Wubin Ding (11823941)

    Published 2025
    “…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
  17. 137

    IGD-cyberbullying-detection-AI by Bryan James (19921044)

    Published 2024
    “…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
  18. 138

    Overview of generalized weighted averages. by Nobuhito Manome (8882084)

    Published 2025
    “…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
  19. 139

    Spotted owl habitat quality maps and disturbance attribution analysis by Josh Barry (7573823)

    Published 2025
    “…<p dir="ltr">This dataset includes annual spatial maps of spotted owl nesting habitat quality in Southern California and an accompanying ArcPython script used to attribute negative annual habitat change to wildfire (Barry et al., 2025). …”
  20. 140

    Automatic data reduction for the typical astronomer by Bradford Holden (21789524)

    Published 2025
    “…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”