Search alternatives:
code implementing » model implementing (Expand Search), consider implementing (Expand Search), _ implementing (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
code implementing » model implementing (Expand Search), consider implementing (Expand Search), _ implementing (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
-
181
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
182
NanoDB: Research Activity Data Management System
Published 2024“…Cross-Platform Compatibility: Works on Windows, macOS, and Linux. In a Python environment or as an executable. Ease of Implementation: Using the flexibility of the Python framework all the data setup and algorithm can me modified and new functions can be easily added. …”
-
183
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
Published 2025“…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. …”
-
184
Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
185
Raw Data EEG.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
186
Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6
Published 2024“…Extract homologs for all the 501 samples</p><p dir="ltr"><i>python2 blast_to_mcl.py all.rawblast 0.25 >mcl_all_rawblast_out_nohup_out_0.25</i></p><p dir="ltr"><i>mcl mcl_all_rawblast_out_nohup_out_0.25 --abc -te 80 -tf 'gq(5)' -I 1.5 -o hit-frac0.25_I1.5_e5</i></p><p dir="ltr"><i>python2 write_fasta_files_from_mcl.py all.fa hit-frac0.25_I1.5_e5 minimal_taxa outDIR</i></p><p><br></p><p dir="ltr"><b>Step 5: Build Maximum likelihood tree for each homolog group</b></p><p dir="ltr"><i>python2 fasta_to_tree_pxclsq.py fasta_dir number_cores dna bootstrap(y)</i></p><p><br></p><p dir="ltr"><b>Step 6: Extract ortholog groups</b></p><p dir="ltr">Instead of 1to1, MI, RT, or MO methods in Ya et al. (2014), we used a revised version of DISCO (https://github.com/JSdoubleL/DISCO) to infer homologs. …”
-
187
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
188
World Heritage documents reveal persistent gaps between climate awareness and local action
Published 2025“…The documents are sourced from publicly available official reports. The analysis section includes a GLM model implemented in R, along with evaluation tools such as correlation heatmaps, ICC agreement analysis, and MCC-based binary classification assessment. …”
-
189
A Structured Attempt at a Polynomial-Time Solution to the Subset Sum Problem and Its Implications for P vs NP
Published 2025“…The manuscript includes theoretical formulation, Python implementation, verified output snapshots, and detailed analysis — aimed at opening fresh discourse on the P vs NP question. …”
-
190
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
Published 2024“…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
-
191
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
Published 2024“…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
-
192
Soulware-Lite
Published 2025“…</p><p><br></p><p dir="ltr">Soulware-Lite is the first live implementation of a cognitive conscience layer, born from architectural failures in AI output hallucination and anchored by integrity principles like MAP/ARP and RDIP. …”
-
193
Leue Modulation Coefficients (LMC): A Smooth Continuum Embedding of Bounded Arithmetic Data
Published 2025“…This Zenodo package includes: the full research paper (PDF), a complete Python implementation generating the LMC field and conductivity model, a numerical plot comparing discrete LMC values with the smoothed continuum field, a cover letter and supporting documentation. …”
-
194
A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture
Published 2025“…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
-
195
Contrast enhancement of digital images using dragonfly algorithm
Published 2024“…The Python implementation of the proposed approach is available in this <a href="https://github.com/somnath796/DA_contrast_enhancement" target="_blank">Github repository</a>.…”
-
196
Compiled Global Dataset on Digital Business Model Research
Published 2025“…</p><p dir="ltr">For the modeling component, annual publication growth is projected from 2025–2034 using a logistic growth model (S-curve) implemented in Python. …”
-
197
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis – Applications to Sub-Picosecond Dynamics in Microsecond Simulations
Published 2025“…This eliminates the need for intermediate storage and allows immediate access to high-frequency fluctuations and vibrational signatures that would otherwise be inaccessible. We have implemented this streaming interface in the MD engines NAMD, LAMMPS, and GROMACS</p><p dir="ltr">On the client side, we developed the IMDClient Python package which receives the streamed data, stores into a custom buffer, and provides it to external tools as NumPy arrays, facilitating integration with scientific computing workflows. …”
-
198
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
199
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”
-
200
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”