Search alternatives:
code implementing » model implementing (Expand Search), consider implementing (Expand Search), _ implementing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
representing » represent (Expand Search), represents (Expand Search)
code implementing » model implementing (Expand Search), consider implementing (Expand Search), _ implementing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
representing » represent (Expand Search), represents (Expand Search)
-
201
Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet
Published 2025“…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…”
-
202
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
203
Image 1_An explainable analysis of depression status and influencing factors among nursing students.png
Published 2025“…Data cleaning was performed in Excel, and statistical analyses were conducted using SPSS Statistics version 27.0 and Python 3.9.</p>Results<p>The incidence of depression among nursing students is 28.60%. …”
-
204
<b>IEEE 14 bus test systems row data </b>
Published 2025“…Each row in the dataset represents one simulated case, and each column corresponds to an input feature used in the deep learning model.…”
-
205
Indirect Reciprocity and the Evolution of Prejudicial Groups
Published 2024“…This is conducted through an agent based model over a population of agents that interact through a `donation game' in which resources are donated to third parties at a cost without receiving a direct benefit. …”
-
206
Summary of Tourism Dataset.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
207
Segment-wise Spending Analysis.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
208
Hyperparameter Parameter Setting.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
209
Marketing Campaign Analysis.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
210
Visitor Segmentation Validation Accuracy.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
211
Integration of VAE and RNN Architecture.
Published 2025“…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …”
-
212
6. Motif Code Theory
Published 2025“…<p dir="ltr">The Motif Code Theory (MCT) simulation code, mct_unified_code.py, is a Python 3.9 script that models the universe as a time-dependent directed multigraph G(t) = (V(t), E(t)) with N=10^7 vertices (representing quantum fields/particles) and edges (interactions). …”
-
213
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
Published 2025“…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…”
-
214
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
Published 2025“…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …”
-
215
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
216
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
Published 2025“…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
-
217
Probabilistic-QSR-GeoQA
Published 2024“…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …”
-
218
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
219
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
-
220
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…Full source code and version details are available upon request.…”