Showing 201 - 220 results of 254 for search '(( python code implementing ) OR ( python model represents ))', query time: 0.29s Refine Results
  1. 201

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  2. 202

    <b>Data and Code from 'The Perfect and Legitimate Bribe': A Transparent Record of Human-AI Collaboration in Legal Scholarship</b> by Joshua Stern (21748181)

    Published 2025
    “…</p><p dir="ltr">For optimal viewing of `collated-anonymized.txt`, a text editor that can handle long lines without word wrapping is recommended to preserve the indentation that represents the conversational branching structure.</p><p><br></p><p dir="ltr">### **Running Code/Software**</p><p dir="ltr">The provided scripts (`collator-ipynb.txt` and `sentence-ancestry-ipynb.txt`) are Jupyter Notebooks and require a Python 3 environment to run. …”
  3. 203

    Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems by Lakshit Mathur (20894549)

    Published 2025
    “…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…”
  4. 204

    Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil) by Amanda Bueno de Moraes (22559249)

    Published 2025
    “…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …”
  5. 205

    Machine Learning-Driven Discovery and Database of Cyanobacteria Bioactive Compounds: A Resource for Therapeutics and Bioremediation by Renato Soares (20348202)

    Published 2024
    “…The biochemical descriptors were then used to determine the most promising protein targets for human therapeutic approaches and environmental bioremediation using the best machine learning (ML) model. The creation of our database, coupled with the integration of computational docking protocols, represents an innovative approach to understanding the potential of cyanobacteria bioactive compounds. …”
  6. 206

    Missing Value Imputation in Relational Data Using Variational Inference by Simon Fontaine (7046618)

    Published 2025
    “…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
  7. 207

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Analysis of the confusion matrix revealed a critical limitation: although the model correctly identified 785 poisonous mushrooms, it misclassified 313 as edible (false negatives), which represents an unacceptable risk in a practical application.…”
  8. 208

    <b>IEEE 14 bus test systems row data </b> by meysam shahriyari (22599314)

    Published 2025
    “…Each row in the dataset represents one simulated case, and each column corresponds to an input feature used in the deep learning model.…”
  9. 209

    Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i> by Hao Chen (20313552)

    Published 2025
    “…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
  10. 210

    Probabilistic-QSR-GeoQA by Mohammad Kazemi (19442467)

    Published 2024
    “…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …”
  11. 211

    Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789 by Jordan Waters (21620558)

    Published 2025
    “…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
  12. 212

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis by Alan Glanz (22109698)

    Published 2025
    “…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
  13. 213
  14. 214

    Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks by NORLIZA BINTI MOHAMED (20739875)

    Published 2025
    “…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
  15. 215

    Raw Data EEG.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks by NORLIZA BINTI MOHAMED (20739875)

    Published 2025
    “…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
  16. 216

    Online Resource: Reservoir Computing as a Promising Approach for False Data Injection Attack Detection in Smart Grids by Carl-Hendrik Peters (21530624)

    Published 2025
    “…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
  17. 217

    Improving the calibration of an integrated CA-What If? digital planning framework by CA What If? (21381170)

    Published 2025
    “…planning support system (PSS) sub-model to generate and analyse three representative built-up development scenarios. …”
  18. 218

    Supplementary Material for: The prediction of hematoma growth in acute intracerebral hemorrhage: from 2-dimensional shape to 3-dimensional morphology by figshare admin karger (2628495)

    Published 2025
    “…We subsequently constructed the 3-dimensional morphology models, including the probability of hematoma morphology (PHM) and the probability of comprehensive model (PCM), to predict HG. …”
  19. 219

    Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds by Gloria Castañeda-Valencia (20758502)

    Published 2025
    “…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
  20. 220

    End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting by Jamie Hathaway (10285367)

    Published 2025
    “…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …”