بدائل البحث:
study presented » study presents (توسيع البحث), study represents (توسيع البحث)
code predicted » model predicted (توسيع البحث), models predicted (توسيع البحث), low predicted (توسيع البحث)
python study » method study (توسيع البحث)
study presented » study presents (توسيع البحث), study represents (توسيع البحث)
code predicted » model predicted (توسيع البحث), models predicted (توسيع البحث), low predicted (توسيع البحث)
python study » method study (توسيع البحث)
-
161
Table_1_XCast: A python climate forecasting toolkit.docx
منشور في 2022"…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
-
162
Table_2_XCast: A python climate forecasting toolkit.docx
منشور في 2022"…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
-
163
Table_1_XCast: A python climate forecasting toolkit.docx
منشور في 2022"…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
-
164
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test Code Repair
منشور في 2025"…<p dir="ltr">This is the replication package associated with the paper: 'FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test for Code Repair'</p><p><br></p><p dir="ltr">### Requirements</p><p dir="ltr">This is a list of all required python packages:</p><p dir="ltr">-imbalanced_learn==0.8.1</p><p dir="ltr">-numpy==1.19.5</p><p dir="ltr">-pandas==1.3.3</p><p dir="ltr">-transformers==4.10.2</p><p dir="ltr">-torch==1.5.0</p><p dir="ltr">-scikit_learn==0.24.2</p><p dir="ltr">-openai==v0.28.1</p><p><br></p><p dir="ltr">#Automated tool for labelling dataset with flaky test fix categories</p><p><br></p><p dir="ltr">This is a step-by-step guideline for automatically labelling dataset with flaky test fix categories</p><p><br></p><p><br></p><p dir="ltr">### Input Files:</p><p dir="ltr">This is a an input file that is required to accomplish this step:</p><p dir="ltr">* Data/IdoFT_dataset_filtered.csv</p><p dir="ltr">https://figshare.com/s/47f0fb6207ac3f9e2351</p><p><br></p><p dir="ltr">### Output Files:</p><p dir="ltr">* Results/IdoFT_dataset_filtered.csv</p><p><br></p><p><br></p><p dir="ltr">### Replicating the experiment</p><p><br></p><p dir="ltr">This experiment can be executed using the following commands after navigating to the `Code\` folder:</p><p><br></p><p dir="ltr">```console</p><p dir="ltr">bash Automated_labelling_tool.sh</p><p>```</p><p><br></p><p dir="ltr">It will generate the dataset required to run our prediction models to predict the category of the fix, given a flaky test code</p><p><br></p><p>---</p><p><br></p><p dir="ltr"># Prediction models for fix categories using the test case code</p><p><br></p><p dir="ltr">This is the guideline for replicating the experiments we used to evaluate our prediction models i.e. …"
-
165
PyRates—A Python framework for rate-based neural simulations
منشور في 2019"…While many such tools exist for different families of neural models, there is a lack of tools allowing for both a generic model definition and efficiently parallelized simulations. In this work, we present PyRates, a Python framework that provides the means to build a large variety of rate-based neural models. …"
-
166
-
167
-
168
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
-
169
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
-
170
Code for the HIVE Appendicitis prediction modelRepository with LLM_data_extractor_optuna for automated feature extraction
منشور في 2025"…</p><p dir="ltr"><b>LLM Data Extractor optuna repo</b> is a Python framework for generating and evaluating clinical text predictions using large language models (LLMs) like <code>qwen2.5</code>. …"
-
171
PyLandStats: An open-source Pythonic library to compute landscape metrics
منشور في 2019"…This article presents PyLandStats, an open-source Pythonic library to compute landscape metrics within the scientific Python stack. …"
-
172
-
173
-
174
Comparison of Dong’s emotion words in Martin’s system and the Chinese dictionary.
منشور في 2024الموضوعات: -
175
Comparison of Xu’s emotion words in Martin’s system and the Chinese dictionary.
منشور في 2024الموضوعات: -
176
-
177
Emotion categories and Word numbers in NRC Emotion Intensity Lexicon (NRC-EIL).
منشور في 2024الموضوعات: -
178
Comparison of Zhang’s emotion words in Martin’s system and the Chinese dictionary.
منشور في 2024الموضوعات: -
179
-
180