Search alternatives:
code implementation » model implementation (Expand Search), world implementation (Expand Search), _ implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
code implementation » model implementation (Expand Search), world implementation (Expand Search), _ implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
-
201
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
Published 2025“…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …”
-
202
Multisession fNIRS-EEG data of Post-Stroke Motor Recovery: Recordings During Intact and Paretic Hand Movements
Published 2025“…The fNIRS .snirf files are accompanied by event files as .txt tables, containing arrays of event timestamps and corresponding event codes. The code for signal reading, preprocessing, and epoching is provided with the dataset in the “Preprocessing” file. …”
-
203
Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
204
Raw Data EEG.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
205
Online Resource: Reservoir Computing as a Promising Approach for False Data Injection Attack Detection in Smart Grids
Published 2025“…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
-
206
PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units
Published 2025“…We report the development and implementation of electronic excited-state capabilities for semiempirical quantum chemical methods at both the Configuration Interaction Singles and Time-Dependent Hartree–Fock levels of theory, integrated within the PYSEQM 2.0 software package (https://github.com/lanl/PYSEQM). …”
-
207
Digital Twin for Chemical Sciences
Published 2025“…The procedure for generating data in Figure 3 can be found in the demo notebook in Supplementary Code. The procedure for generating data of Figure 4 has been uploaded in fig4_figshare.zip file. …”
-
208
Sonification of Warming Stripes
Published 2025“…The sonification was produced using the STRAUSS sonification Python package.</p><p dir="ltr">Here we release:<br>1. …”
-
209
Probabilistic-QSR-GeoQA
Published 2024“…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …”
-
210
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
Published 2025“…This repository provides the raw data, the complete imputed daily dataset, imputation statistics, a data dictionary, the Python code used (Imputation_Air_Pollutants_NABEL.py), smoothed time-series plots (28-day running average), and a comparative table of winter pollutant burdens 2016–2019. …”
-
211
Supplementary material for "Euler inversion: Locating sources of potential-field data through inversion of Euler's homogeneity equation"
Published 2025“…</p><h2>License</h2><p dir="ltr">All Python source code (including <code>.py</code> and <code>.ipynb</code> files) is made available under the MIT license. …”
-
212
A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture
Published 2025“…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
-
213
Sonification of Growing Black Hole
Published 2024“…We used the open source Python package STRAUSS to produce the sonification (Trayford and Harrison 2023). …”
-
214
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
215
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
216
Computational performance analysis script.
Published 2025“…<p>Python implementation for computational performance evaluation and timing analysis.…”
-
217
Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files)
Published 2025“…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
-
218
IGD-cyberbullying-detection-AI
Published 2024“…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
-
219
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
Published 2025“…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata from Step 1</li><li><code>perception_module/trained_models/</code> - Pre-trained models</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python -m perception_module.pred \<br> --model-weights .…”
-
220
Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr
Published 2025“…Our implementation shows processing time reductions of up to 210× compared to traditional workflows, even on standard hardware. …”