Search alternatives:
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
-
121
Memory monitoring recognition test main screen.
Published 2025“…</p><p>Method</p><p>The MMRT was developed using Python and Kivy, facilitating the creation of cross-platform user interfaces. …”
-
122
Task descriptions.
Published 2025“…</p><p>Method</p><p>The MMRT was developed using Python and Kivy, facilitating the creation of cross-platform user interfaces. …”
-
123
Spherical Texture method design.
Published 2025“…<b>H)</b> The <i>Spherical Texture</i> extraction is implemented as a Python package and it is directly available in <i>ilastik</i>, allowing for its adoption into the Object Classification workflow. …”
-
124
-
125
Code for High-quality Human Activity Intensity Maps in China from 2000-2020
Published 2025“…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …”
-
126
-
127
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
Published 2024“…</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …”
-
128
Overview of deep learning terminology.
Published 2024“…Training loops are implemented with the luz package. The geodl package provides utility functions for creating raster masks or labels from vector-based geospatial data and image chips and associated masks from larger files and extents. …”
-
129
-
130
Linking Thermal Conductivity to Equations of State Using the Residual Entropy Scaling Theory
Published 2024“…To use our model easily, a software package written in Python is provided in the Supporting Information.…”
-
131
Overview of generalized weighted averages.
Published 2025“…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
-
132
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
133
Dataset for CNN-based Bayesian Calibration of TELEMAC-2D Hydraulic Model
Published 2025“…</li><li>Files starting with <code>y_part</code> are flattened output arrays representing corresponding water depth values.…”
-
134
Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet
Published 2025“…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…”
-
135
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
136
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…The samples (SRR36268464, SRR36225071) were retrieved from the NCBI Sequence Read Archive (SRA) and represent publicly available, real-world viral specimens collected during the final month of 2025, <b>the most recent temporal window available at the time of analysis.…”
-
137
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …”
-
138
Attention and Cognitive Workload
Published 2025“…</p><p dir="ltr">The data for subject 2 do not include the 2nd part of the acquisition (python task) because the equipment stopped acquiring; subject 3 has the 1st (N-Back task and mental subtraction) and the 2nd part (python tutorial) together in the <code>First part</code> folder (file <code>D1_S3_PB_description.json</code> indicates the start and end of each task); subject 4 only has the mental subtraction task in the 1st part acquisition and in subject 8, the subtraction task data is included in the 2nd part acquisition, along with python task.…”
-
139
Audio Datasets of belt conveyor rollers in mines
Published 2024“…</li><li><b>Python Code: </b>This code validates the accuracy and usability of the audio feature datasets in real-time monitoring of belt conveyor roller operational states.…”
-
140
GeoGraphNetworks: Shapefile-Derived Datasets for Accurate and Scalable Graphical Representations
Published 2025“…The rail line infrastructure of the USA is represented as a single network that covers the entire country and includes connectivity to Canada. …”