Search alternatives:
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
consider » considered (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
consider » considered (Expand Search)
-
141
Data Sheet 1_COCαDA - a fast and scalable algorithm for interatomic contact detection in proteins using Cα distance matrices.pdf
Published 2025“…COCαDA demonstrated superior performance compared to the other methods, achieving on average 6x faster computation times than advanced data structures like k-d trees from NS, in addition to being simpler to implement and fully customizable. …”
-
142
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
Published 2025“…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …”
-
143
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…We are grateful for the numerous feedback from users and in particular to Dr. Pushpendra Raghav, Research Scientist, Department of Civil Engineering, University of Alabama, for identifying and bringing this issue to our attention. …”
-
144
Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr
Published 2025“…</p><p dir="ltr">In this work, we apply the scientific datacube model to the transformation of large-scale radar datasets from Colombia and the U.S. (NEXRAD), using open-source tools from the Python ecosystem such as Xarray, Xradar, and Dask to enable efficient parallel processing and scalable analysis. …”
-
145
Copy number contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
146
Gene mutation contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
147
Resistant & sensitive cell line Info on AZD5991.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
148
Resistant & sensitive drug info on COLO800.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
149
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
150
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
151
Research Database
Published 2025“…</p><p dir="ltr">A dataset of <b>1,157 georeferenced residential properties</b> was compiled from online real estate platforms and municipal GIS records. …”
-
152
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
153
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
154
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…</p><p dir="ltr"><b>rslt.pkl</b>: A pickled Python object that stores the explainer based on geoshapley for dataset 1.…”
-
155
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…The proposed DIDS-BRBPNN-BBWOA-IoT method is implemented using Python. The performance of the DIDS-BRBPNN-BBWOA-IoT approach is examined using performance metrics like accuracy, precision, recall, f1-score, specificity, error rate; computation time, and ROC. …”
-
156
SpatialKNifeY analysis landscape.
Published 2025“…(B) Implementation of SpatialKNifeY (SKNY). A Python library of SKNY depends on stlearn [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref023" target="_blank">23</a>] and scanpy [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref009" target="_blank">9</a>] functions (see “Methods”) and AnnData object programming [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref010" target="_blank">10</a>]. …”
-
157
OHID-FF dataset for forest fire detection and classification
Published 2025“…</p><p dir="ltr">- For binary classification experiments with the included scripts:</p><p dir="ltr">```bash</p><p dir="ltr">python "train val scripts/main.py"</p><p>```</p><p dir="ltr"><br></p><p dir="ltr">Results and logs from training runs are saved under `results/` (see the scripts folder README for details).…”
-
158
MSc Personalised Medicine at Ulster University
Published 2025“…</p><p dir="ltr">The programme has oversight from a dedicated Employer Advisory Board, comprising over 15 industrial partners located throughout the UK, Ireland and the US.…”
-
159
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Patients underwent 3T MRI scans with T1, T2, and contrast-enhanced (DCE) sequences. Imaging data from four medical centers were standardized through preprocessing steps, including intensity normalization, registration, and motion correction. …”
-
160
Data and code for: Automatic fish scale analysis
Published 2025“…GUI, pre/post-processing) is available upon request from the authors and is not included here.</i></li></ul></li><li><b>README.txt</b> – detailed file explanations and usage instructions</li></ul><p dir="ltr">The full statistical analysis and visualization pipeline is implemented in R and hosted on GitHub:<br>https://github.com/Birdy332/Automatic-fish-scale-analysis-r-scripts</p><p dir="ltr"><br></p><p dir="ltr">All figures shown in the manuscript can be reproduced using these scripts and the datasets provided here.…”