يعرض 1 - 20 نتائج من 224 نتيجة بحث عن '(( python effective implementation ) OR ( ((python model) OR (python code)) represent ))', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1

    Resolving Harvesting Errors in Institutional Repository Migration : Using Python Scripts with VS Code and LLM Integration. حسب satoshi hashimoto(橋本 郷史) (18851272)

    منشور في 2025
    "…Therefore, we decided to create a dedicated Python program using Large Language Model (LLM)-assisted coding.…"
  2. 2

    Multi-Version PYZ Builder Script: A Universal Python Module Creation Tool حسب Pavel Izosimov (20096259)

    منشور في 2024
    "…</li></ul><p dir="ltr"><b>Application Areas</b></p><p dir="ltr">The <b>Multi-Version PYZ Builder Script</b> can be effectively applied in various areas:</p><ul><li><b>Commercial Distribution</b>: Distribute protected Python code to clients or customers, implementing advanced <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank"><b>source code protection</b></a> for sales or rentals.…"
  3. 3

    City-level GDP estimates for China under alternative pathways from 2020 to 2100-python code حسب Jinjie Sun (11791715)

    منشور في 2025
    "…The dataset is complemented by processing code and raw input data in the "Python_Code" directory to ensure full reproducibility. …"
  4. 4

    System Hardware ID Generator Script: A Cross-Platform Hardware Identification Tool حسب Pavel Izosimov (20096259)

    منشور في 2024
    "…This tool provides <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">code obfuscation in Python</a> and <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank">Python code encryption</a>, enabling developers to <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">protect Python code</a> effectively.…"
  5. 5

    Python code for hierarchical cluster analysis of detected R-strategies from rule-based NLP on 500 circular economy definitions حسب Zahir Barahmand (18008947)

    منشور في 2025
    "…</p><p dir="ltr">This Python code was optimized and debugged using ChatGPT-4o to ensure implementation efficiency, accuracy, and clarity.…"
  6. 6

    Code program. حسب Honglei Pang (22693724)

    منشور في 2025
    "…<div><p>Vehicle lateral stability control under hazardous operating conditions represents a pivotal challenge in intelligent driving active safety. …"
  7. 7
  8. 8

    Python implementation of a wildfire propagation example using m:n-CAk over Z and R. حسب Pau Fonseca i Casas (9507338)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr">## Files in the Project</p><p dir="ltr"><br></p><p dir="ltr">### Python Scripts</p><p dir="ltr">- **Wildfire_on_m_n-CAk.py**: This file contains the main code for the fire cellular automaton. …"
  9. 9

    Code interpreter with LLM. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  10. 10
  11. 11
  12. 12
  13. 13

    Python sript. حسب Kan Jia (6438599)

    منشور في 2025
  14. 14

    Datasets To EVAL. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  15. 15

    Statistical significance test results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  16. 16

    How RAG work. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  17. 17

    OpenBookQA experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  18. 18

    AI2_ARC experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  19. 19

    TQA experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  20. 20

    E-EVAL experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"