بدائل البحث:
effective implementation » effective prevention (توسيع البحث)
python effective » proven effective (توسيع البحث), obtain effective (توسيع البحث), 1_the effective (توسيع البحث)
python models » motion models (توسيع البحث), pelton models (توسيع البحث)
effective implementation » effective prevention (توسيع البحث)
python effective » proven effective (توسيع البحث), obtain effective (توسيع البحث), 1_the effective (توسيع البحث)
python models » motion models (توسيع البحث), pelton models (توسيع البحث)
-
21
-
22
-
23
-
24
-
25
-
26
SciPy2024: Facilitating scientific investigations from long-tail data with Python
منشور في 2024"…</p><p><br></p><p dir="ltr">Although the Pandas extension and its incorporation into Pyleoclim represents a major stepping stone to allow scientists in these domains to make use of more open science code, work remains for interoperability with other open source libraries such as Matplotlib, Seaborn, Scikit-learn, and Scipy. …"
-
27
-
28
-
29
-
30
-
31
Python implementation of a wildfire propagation example using m:n-CAk over Z and R.
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr">## Files in the Project</p><p dir="ltr"><br></p><p dir="ltr">### Python Scripts</p><p dir="ltr">- **Wildfire_on_m_n-CAk.py**: This file contains the main code for the fire cellular automaton. …"
-
32
-
33
Table_1_An application programming interface implementing Bayesian approaches for evaluating effect of time-varying treatment with R and Python.pdf
منشور في 2023"…Here, we introduce an application programming interface (API) that implements both BART and GP for estimating averaged treatment effect (ATE) and conditional averaged treatment (CATE) for the two-stage time-varying treatment strategies.…"
-
34
-
35
-
36
-
37
Code interpreter with LLM.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
38
-
39
-
40
Utilizing variable background weight maps for training the model on debris.
منشور في 2022الموضوعات: