بدائل البحث:
from implementing » after implementing (توسيع البحث), _ implementing (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
from implementing » after implementing (توسيع البحث), _ implementing (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
-
1
Python implementation of a wildfire propagation example using m:n-CAk over Z and R.
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr">## Files in the Project</p><p dir="ltr"><br></p><p dir="ltr">### Python Scripts</p><p dir="ltr">- **Wildfire_on_m_n-CAk.py**: This file contains the main code for the fire cellular automaton. …"
-
2
Python code for hierarchical cluster analysis of detected R-strategies from rule-based NLP on 500 circular economy definitions
منشور في 2025"…</p><p dir="ltr">This Python code was optimized and debugged using ChatGPT-4o to ensure implementation efficiency, accuracy, and clarity.…"
-
3
Comparison of performance between our next reaction implementation and the Python library from Ref. [3].
منشور في 2025"…<p>We simulate SIR epidemic processes on Watts-Strogatz networks with parameters <i>k</i><sub>0</sub> = 5, <i>p</i> = 0.1 <b>(a)</b> and Barabási-Albert networks with parameter <i>m</i> = 5 <b>(b)</b> using the Python wrapper of our C++ implementation and compare its performance with the Python library from Ref. …"
-
4
Resolving Harvesting Errors in Institutional Repository Migration : Using Python Scripts with VS Code and LLM Integration.
منشور في 2025"…Therefore, we decided to create a dedicated Python program using Large Language Model (LLM)-assisted coding.…"
-
5
Multi-Version PYZ Builder Script: A Universal Python Module Creation Tool
منشور في 2024"…This tool represents a significant advancement in the realm of <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank"><b>secure code sharing</b></a>, providing a robust solution for modern Python programming challenges.…"
-
6
City-level GDP estimates for China under alternative pathways from 2020 to 2100-python code
منشور في 2025"…The dataset is complemented by processing code and raw input data in the "Python_Code" directory to ensure full reproducibility. …"
-
7
-
8
Code program.
منشور في 2025"…<div><p>Vehicle lateral stability control under hazardous operating conditions represents a pivotal challenge in intelligent driving active safety. …"
-
9
Cost functions implemented in Neuroptimus.
منشور في 2024"…However, using most of these software tools and choosing the most appropriate algorithm for a given optimization task require substantial technical expertise, which prevents the majority of researchers from using these methods effectively. To address these issues, we developed a generic platform (called Neuroptimus) that allows users to set up neural parameter optimization tasks via a graphical interface, and to solve these tasks using a wide selection of state-of-the-art parameter search methods implemented by five different Python packages. …"
-
10
Code interpreter with LLM.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
11
-
12
-
13
Datasets To EVAL.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
14
Statistical significance test results.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
15
How RAG work.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
16
OpenBookQA experimental results.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
17
AI2_ARC experimental results.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
18
TQA experimental results.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
19
E-EVAL experimental results.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
-
20
TQA Accuracy Comparison Chart on different LLM.
منشور في 2025"…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"