بدائل البحث:
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
from implementing » after implementing (توسيع البحث), _ implementing (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
from implementing » after implementing (توسيع البحث), _ implementing (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
-
221
<b>Data Availability</b>
منشور في 2025"…</p><p dir="ltr">Reproducibility Resources:</p><p dir="ltr">Python scripts for reproducing figures, preprocessing data, and training machine learning models (SVM, MLP, XGB, BRR, KRR).…"
-
222
<b>Algorithm Pseudocode</b>
منشور في 2025"…The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …"
-
223
RabbitSketch
منشور في 2025"…RabbitSketch achieves significant speedups compared to existing implementations, ranging from 2.30x to 49.55x.In addition, we provide flexible and easy-to-use interfaces for both Python and C++. …"
-
224
IGD-cyberbullying-detection-AI
منشور في 2024"…[<a href="https://doi.org/10.6084/m9.figshare.27266961" rel="nofollow" target="_blank">https://doi.org/10.6084/m9.figshare.27266961</a>]</p><h2>Table of Contents</h2><ul><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#overview" target="_blank">Overview</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#requirements" target="_blank">Requirements</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#datasets" target="_blank">Datasets</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#installation" target="_blank">Installation</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#running-the-code" target="_blank">Running the Code</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#expected-results" target="_blank">Expected Results</a></li></ul><h2>Overview</h2><p dir="ltr">This repository provides the code for predicting mental health outcomes associated with Internet Gaming Disorder (IGD) and Cyberbullying using machine learning and deep learning models. Models like Logistic Regression, Random Forest, Ensemble Models, CNNs, and LSTMs are implemented to detect patterns from behavioral data.…"
-
225
Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection
منشور في 2025"…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…"
-
226
Reproducible Code and Data for figures
منشور في 2025"…<br>✅ <b>Generated Figures</b> – High-resolution images illustrating model outputs and analytical results.<br>✅ <b>Machine Learning Models</b> – Implementation of <b>K-Nearest Neighbors (KNN) regression</b> with different distance metrics (<b>Mahalanobis, Fuzzy Mahalanobis, Euclidean</b>).…"
-
227
Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space
منشور في 2025"…/CAH-GKGE/model/supplementary instruction.md </p>…"
-
228
Supplementary Material
منشور في 2025"…The supplementary material includes the full Python-based implementation of the AI-driven optimization framework described in the manuscript. …"
-
229
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
منشور في 2024"…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
-
230
DA-Faster-RCNN code
منشور في 2025"…<p dir="ltr">This repository provides the code used in the paper “Domain-Adaptive Faster R-CNN for Non-PPE Identification on Construction Sites from Body-Worn and General Images.” The implementation is written in Python using PyTorch and Detectron2.…"
-
231
Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6
منشور في 2024"…Extract homologs for all the 501 samples</p><p dir="ltr"><i>python2 blast_to_mcl.py all.rawblast 0.25 >mcl_all_rawblast_out_nohup_out_0.25</i></p><p dir="ltr"><i>mcl mcl_all_rawblast_out_nohup_out_0.25 --abc -te 80 -tf 'gq(5)' -I 1.5 -o hit-frac0.25_I1.5_e5</i></p><p dir="ltr"><i>python2 write_fasta_files_from_mcl.py all.fa hit-frac0.25_I1.5_e5 minimal_taxa outDIR</i></p><p><br></p><p dir="ltr"><b>Step 5: Build Maximum likelihood tree for each homolog group</b></p><p dir="ltr"><i>python2 fasta_to_tree_pxclsq.py fasta_dir number_cores dna bootstrap(y)</i></p><p><br></p><p dir="ltr"><b>Step 6: Extract ortholog groups</b></p><p dir="ltr">Instead of 1to1, MI, RT, or MO methods in Ya et al. (2014), we used a revised version of DISCO (https://github.com/JSdoubleL/DISCO) to infer homologs. …"
-
232
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
منشور في 2025"…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…"
-
233
adnus
منشور في 2025"…<p dir="ltr">adnus (AdNuS): Advanced Number Systems</p><p dir="ltr">adnus is a Python library that provides an implementation of various advanced number systems. …"
-
234
Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving"
منشور في 2025"…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…"
-
235
Code
منشور في 2025"…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …"
-
236
Core data
منشور في 2025"…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …"
-
237
Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018)
منشور في 2025"…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"
-
238
A Structured Attempt at a Polynomial-Time Solution to the Subset Sum Problem and Its Implications for P vs NP
منشور في 2025"…The manuscript includes theoretical formulation, Python implementation, verified output snapshots, and detailed analysis — aimed at opening fresh discourse on the P vs NP question. …"
-
239
PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation
منشور في 2025"…PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation This release provides the complete, reproducible numerical implementation of the Parry Tensional Phase Collapse (PTPC) model — the dynamic core of the Universal Heartbeat Theory (UHT/PTPC). …"
-
240
Gene Editing using Transformer Architecture
منشور في 2025"…Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …"