Showing 21 - 40 results of 381 for search '(( python model implementation ) OR ( ((python models) OR (python code)) represented ))', query time: 0.49s Refine Results
  1. 21

    Datasets To EVAL. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  2. 22

    Statistical significance test results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  3. 23

    How RAG work. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  4. 24

    OpenBookQA experimental results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  5. 25

    AI2_ARC experimental results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  6. 26

    TQA experimental results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  7. 27

    E-EVAL experimental results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  8. 28

    TQA Accuracy Comparison Chart on different LLM. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  9. 29

    ScienceQA experimental results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  10. 30
  11. 31

    Cost functions implemented in Neuroptimus. by Máté Mohácsi (20469514)

    Published 2024
    “…We used the common interface provided by Neuroptimus to conduct a detailed comparison of more than twenty different algorithms (and implementations) on six distinct benchmarks that represent typical scenarios in neuronal parameter search. …”
  12. 32
  13. 33

    System Hardware ID Generator Script: A Cross-Platform Hardware Identification Tool by Pavel Izosimov (20096259)

    Published 2024
    “…This tool provides <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">code obfuscation in Python</a> and <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank">Python code encryption</a>, enabling developers to <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">protect Python code</a> effectively.…”
  14. 34
  15. 35
  16. 36
  17. 37
  18. 38
  19. 39
  20. 40