Search alternatives:
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
code predicted » model predicted (Expand Search), models predicted (Expand Search), low predicted (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
code predicted » model predicted (Expand Search), models predicted (Expand Search), low predicted (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
61
-
62
-
63
-
64
FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test Code Repair
Published 2025“…<p dir="ltr">This is the replication package associated with the paper: 'FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test for Code Repair'</p><p><br></p><p dir="ltr">### Requirements</p><p dir="ltr">This is a list of all required python packages:</p><p dir="ltr">-imbalanced_learn==0.8.1</p><p dir="ltr">-numpy==1.19.5</p><p dir="ltr">-pandas==1.3.3</p><p dir="ltr">-transformers==4.10.2</p><p dir="ltr">-torch==1.5.0</p><p dir="ltr">-scikit_learn==0.24.2</p><p dir="ltr">-openai==v0.28.1</p><p><br></p><p dir="ltr">#Automated tool for labelling dataset with flaky test fix categories</p><p><br></p><p dir="ltr">This is a step-by-step guideline for automatically labelling dataset with flaky test fix categories</p><p><br></p><p><br></p><p dir="ltr">### Input Files:</p><p dir="ltr">This is a an input file that is required to accomplish this step:</p><p dir="ltr">* Data/IdoFT_dataset_filtered.csv</p><p dir="ltr">https://figshare.com/s/47f0fb6207ac3f9e2351</p><p><br></p><p dir="ltr">### Output Files:</p><p dir="ltr">* Results/IdoFT_dataset_filtered.csv</p><p><br></p><p><br></p><p dir="ltr">### Replicating the experiment</p><p><br></p><p dir="ltr">This experiment can be executed using the following commands after navigating to the `Code\` folder:</p><p><br></p><p dir="ltr">```console</p><p dir="ltr">bash Automated_labelling_tool.sh</p><p>```</p><p><br></p><p dir="ltr">It will generate the dataset required to run our prediction models to predict the category of the fix, given a flaky test code</p><p><br></p><p>---</p><p><br></p><p dir="ltr"># Prediction models for fix categories using the test case code</p><p><br></p><p dir="ltr">This is the guideline for replicating the experiments we used to evaluate our prediction models i.e. …”
-
65
-
66
-
67
-
68
-
69
Flowchart representation of lion optimization algorithm for hyperparameter tuning in the HCAP model.
Published 2025Subjects: -
70
Code for the HIVE Appendicitis prediction modelRepository with LLM_data_extractor_optuna for automated feature extraction
Published 2025“…</p><p dir="ltr"><b>LLM Data Extractor optuna repo</b> is a Python framework for generating and evaluating clinical text predictions using large language models (LLMs) like <code>qwen2.5</code>. …”
-
71
-
72
-
73
Code
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
74
-
75
-
76
-
77
OVEP code
Published 2025“…/usr/bin/env python3</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/plot/plot_auc_nucleotide_length.py` </p><p dir="ltr"> Script related to: plot auc nucleotide length.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/plot/plot_scatter_auc_length.py` </p><p dir="ltr"> Script related to: plot scatter auc length.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_attention/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_attention/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_attention/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_attention/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_1024/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_1024/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_1024/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_1024/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_nonbinary_train_and_predict_5fold_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindelonlyintrain_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindelonlyintrain_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindelonlyintrain_masklabel/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindelonlyintrain_indelonlyintest_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindelonlyintrain_indelonlyintest_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonlyonlyintrain_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonlyonlyintrain_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonlyonlyintrain_masklabel/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_nonbinary_5fold_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_4096/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_4096/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_4096/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_4096/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_512/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_512/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_512/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel_512/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindel_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindel_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindel_masklabel/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_nonindel_masklabel/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonlyonlyintrain_nonindelonlyintest_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonlyonlyintrain_nonindelonlyintest_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_masklabel/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonly_masklabel/predict_nucleotide_plot.py` </p><p dir="ltr"> Script related to: predict nucleotide plot.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonly_masklabel/predict_train.py` </p><p dir="ltr"> Script related to: predict train.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonly_masklabel/plot_auc_compare_base.py` </p><p dir="ltr"> Script related to: plot auc compare base.py</p><p dir="ltr">- `rate_code/code_halftrainmaskmissing_masklabel/base_excludeN_5fold_indelonly_masklabel/plot_auc.py` </p><p dir="ltr"> Script related to: plot auc.py</p><p><br></p><p>---</p><p><br></p><p dir="ltr">## Reproducibility hints</p><p><br></p><p dir="ltr">While this snapshot does not include data/configs, common entry points typically look like:</p><p><br></p><p dir="ltr">- `*predict_train*.py` — training loop (likely 5-fold CV; see corresponding `predict_nucleotide_plot.py` for visualization).…”
-
78
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
79
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
80
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”