Search alternatives:
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
code representing » model representing (Expand Search), models representing (Expand Search), tpd representing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
301
3D PD-Controlled Nanorobot Swarm Simulation for Targeted Cancer and BBB Therapy
Published 2025“…Cancer-targeting nanorobots converge rapidly, while BBB-targeting nanorobots follow more complex paths due to navigation constraints.</p><p dir="ltr">Implemented in Python (NumPy, Matplotlib, 3D visualization), the framework is fully annotated and reproducible. …”
-
302
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
303
Building footprtints from 1970s Hexagon spy satellite images for four global urban growth hotspots
Published 2025“…</p> <p><strong>Processing environment</strong></p> <p>This research has been conducted using Python for ESRI ArcGIS Pro version 3.2.1 and the TensorFlow package. …”
-
304
Research Database
Published 2025“…</p><p dir="ltr">Statistical analysis was conducted through <b>multiple regression models</b> implemented in <b>Jamovi</b>, supported by Geographic Information System (GIS) tools to visualize spatial patterns. …”
-
305
Data and code for: Automatic fish scale analysis
Published 2025“…<p dir="ltr">This dataset accompanies the publication:<br><b>"Automatic fish scale analysis: age determination, annuli and circuli detection, length and weight back-calculation of coregonid scales"</b><br></p><p dir="ltr">It provides all essential data and statistical outputs used for the <b>verification and validation</b> of the <i>Coregon Analyzer</i> – a Python-based algorithm for automated biometric fish scale measurement.…”
-
306
<b>Challenges and Strategies for the Management of Quality-Oriented Education Bases in Universities under Informatization Background</b>
Published 2025“…Final codes, together with basic demographic attributes supplied by the institutions’ HR offices, were exported to Excel and cleaned in Python 3.10 using pandas 2.2.1 and numpy 1.26. …”
-
307
<b>Engineered Muscle-Derived Extracellular Vesicles Boost Insulin Sensitivity and Glucose Regulation</b>
Published 2025“…</p><p dir="ltr"><b>miR_path_target_enrichment.csv</b></p><p dir="ltr"><b>Description:</b> KEGG pathway enrichment analysis results of shared mRNA targets of miRNAs miR-16-5p, miR-122-5p and miR-486-5p ranked by their interaction score defined in our paper. this includes the pathway name, the enrichment p-value, number of genes found in the term and number of miRNAs targeting these genes</p><p dir="ltr"><b>Code/software</b></p><p dir="ltr">Data were analyzed using R-V4.0.4, Python-V3.9.2 and GraphPad software. miRNA analyses were run in R-V4.0.4 Differential expression analysis was conducted using the “DEseq2” package and corrected for multiple hypotheses by FDR. …”
-
308
Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018)
Published 2025“…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…”
-
309
Chromosomal rearrangements among clade A pathogenic <i>Cryptococcus</i> species.
Published 2025“…<p>(A) Synteny comparisons between <i>C. neoformans</i> strain 125.91 (reference) and representative strains from 7 other clade A species (8 species total). …”
-
310
IGD-cyberbullying-detection-AI
Published 2024“…[<a href="https://doi.org/10.6084/m9.figshare.27266961" rel="nofollow" target="_blank">https://doi.org/10.6084/m9.figshare.27266961</a>]</p><h2>Table of Contents</h2><ul><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#overview" target="_blank">Overview</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#requirements" target="_blank">Requirements</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#datasets" target="_blank">Datasets</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#installation" target="_blank">Installation</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#running-the-code" target="_blank">Running the Code</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#expected-results" target="_blank">Expected Results</a></li></ul><h2>Overview</h2><p dir="ltr">This repository provides the code for predicting mental health outcomes associated with Internet Gaming Disorder (IGD) and Cyberbullying using machine learning and deep learning models. Models like Logistic Regression, Random Forest, Ensemble Models, CNNs, and LSTMs are implemented to detect patterns from behavioral data.…”
-
311
MSc Personalised Medicine at Ulster University
Published 2025“…This includes the economic models that underpin big pharma as well the importance of entrepreneurship and small medium enterprises in driving forward healthcare innovation.…”
-
312
Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service)
Published 2025“…Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. …”
-
313
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
Published 2025“…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …”
-
314
Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation
Published 2024“…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …”
-
315
PepENS
Published 2025“…<br><br>Download and Use</p><p dir="ltr">The codes for Datasets 1 and 2 are found in the respective folders of this repository.…”
-
316
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
Published 2025“…</p><h2>Software and Spatial Resolution</h2><p dir="ltr">The VRE siting model is implemented using Python and relies heavily on ArcGIS for comprehensive spatial data handling and analysis.…”
-
317
Core data
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”