بدائل البحث:
effective implementation » effective prevention (توسيع البحث)
model implementation » modular implementation (توسيع البحث), world implementation (توسيع البحث), time implementation (توسيع البحث)
python effective » proven effective (توسيع البحث), 1_the effective (توسيع البحث), 2_the effective (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
effective implementation » effective prevention (توسيع البحث)
model implementation » modular implementation (توسيع البحث), world implementation (توسيع البحث), time implementation (توسيع البحث)
python effective » proven effective (توسيع البحث), 1_the effective (توسيع البحث), 2_the effective (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
-
181
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
منشور في 2025"…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …"
-
182
Overview of generalized weighted averages.
منشور في 2025"…In this study, we propose a new generalized upper confidence bound (UCB) algorithm (GWA-UCB1) by extending UCB1, which is a representative algorithm for MAB problems, using generalized weighted averages, and present an effective algorithm for various problem settings. GWA-UCB1 is a two-parameter generalization of the balance between exploration and exploitation in UCB1 and can be implemented with a simple modification of the UCB1 formula. …"
-
183
-
184
-
185
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
منشور في 2025"…</p><p dir="ltr">Models: R code to explore different models for implementation via Python in ArcGIS</p><p dir="ltr">!…"
-
186
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
منشور في 2025"…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…"
-
187
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
منشور في 2025"…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…"
-
188
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
منشور في 2025"…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…"
-
189
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
منشور في 2025"…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…"
-
190
CNG-ARCO-RADAR.pdf
منشور في 2025"…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …"
-
191
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
منشور في 2025"…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …"
-
192
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
منشور في 2024"…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…"
-
193
Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection
منشور في 2025"…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…"
-
194
<b>Data Availability</b>
منشور في 2025"…</p><p dir="ltr">Reproducibility Resources:</p><p dir="ltr">Python scripts for reproducing figures, preprocessing data, and training machine learning models (SVM, MLP, XGB, BRR, KRR).…"
-
195
<b>Data Availability</b>
منشور في 2025"…</p><p dir="ltr">Reproducibility Resources:</p><p dir="ltr">Python scripts for reproducing figures, preprocessing data, and training machine learning models (SVM, MLP, XGB, BRR, KRR).…"
-
196
<b>Algorithm Pseudocode</b>
منشور في 2025"…The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …"
-
197
Reproducible Code and Data for figures
منشور في 2025"…<br>✅ <b>Generated Figures</b> – High-resolution images illustrating model outputs and analytical results.<br>✅ <b>Machine Learning Models</b> – Implementation of <b>K-Nearest Neighbors (KNN) regression</b> with different distance metrics (<b>Mahalanobis, Fuzzy Mahalanobis, Euclidean</b>).…"
-
198
Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space
منشور في 2025"…/CAH-GKGE/model/supplementary instruction.md </p>…"
-
199
Supplementary Material
منشور في 2025"…The supplementary material includes the full Python-based implementation of the AI-driven optimization framework described in the manuscript. …"
-
200
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
منشور في 2025"…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…"