Search alternatives:
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
-
161
Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025)
Published 2025“…<br></p><p dir="ltr">Journal paper introduces RUVPY, a Python software library which implements the Relative Utility Value (RUV) method. …”
-
162
-
163
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
Published 2025“…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”
-
164
Spotted owl habitat quality maps and disturbance attribution analysis
Published 2025“…Users may derive annual gains or losses in habitat quality from these layers and apply the provided ArcPython workflow (nest_fire_zonal_stats.py) to attribute change to specific disturbance drivers. …”
-
165
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
166
Cathode carbon block material parameters [14].
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
167
Sodium concentration distribution cloud map.
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
168
Sodium binding coefficient R.
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
169
-
170
Data files accompanying our PLoS One publication
Published 2025“…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…”
-
171
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…The database also includes three averaged multi-model ensembles produced for each of the four emission scenarios:</p><p>**************************************************************************************************************************</p><p dir="ltr">The Global Aridity Index (Global-AI) and Global Reference Evapo-Transpiration (Global-ET0) datasets provided in Version 3.1 of the Global Aridity Index and Potential Evapo-Transpiration (ET0) Database (Global-AI_PET_v3.x1) provide high-resolution (30 arc-seconds) global raster data for the 1970-2000 period, related to evapotranspiration processes and rainfall deficit for potential vegetative growth, based upon implementation of the FAO-56 Penman-Monteith Reference Evapotranspiration (ET<sub>0</sub>) equation.…”
-
172
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…”
-
173
-
174
-
175
Probabilistic-QSR-GeoQA
Published 2024“…</p><p dir="ltr">- mln: Markov Logic Network (MLN) implementation of point-based CDC and region-based RCC relations required as input for Probcog and SparQ reasoners (This obtained from the study of [Duckham, M., Gabela, J., Kealy, A., Kyprianou, R., Legg, J., Moran, B., Rumi, S. …”
-
176
-
177
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
-
178
-
179
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
180
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”