بدائل البحث:
model implementation » modular implementation (توسيع البحث), world implementation (توسيع البحث), time implementation (توسيع البحث)
rich implementation » time implementation (توسيع البحث), policy implementation (توسيع البحث), pilot implementation (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
model implementation » modular implementation (توسيع البحث), world implementation (توسيع البحث), time implementation (توسيع البحث)
rich implementation » time implementation (توسيع البحث), policy implementation (توسيع البحث), pilot implementation (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
-
1
BSTPP: a python package for Bayesian spatiotemporal point processes
منشور في 2025"…However, they are sometimes neglected due to the difficulty of implementing them. There is a lack of packages with the ability to perform inference for these models, particularly in python. …"
-
2
Compiled Global Dataset on Digital Business Model Research
منشور في 2025"…</p><p dir="ltr">For the modeling component, annual publication growth is projected from 2025–2034 using a logistic growth model (S-curve) implemented in Python. …"
-
3
Missing Value Imputation in Relational Data Using Variational Inference
منشور في 2025"…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …"
-
4
Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees
منشور في 2024"…<p>Bayesian inference for undirected graphical models is mostly restricted to the class of decomposable graphs, as they enjoy a rich set of properties making them amenable to high-dimensional problems. …"
-
5
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
منشور في 2025"…<br><br><b>Missing-Data Handling & Imputation:</b></p><p dir="ltr">The following sequential steps were applied to create a complete and consistent daily time series suitable for analysis (presented in the Imputed_AP_Data_Zurich_2010-25 sheet), particularly addressing the absence of routine PM₂.₅ measurements prior to January 2016. The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …"