Search alternatives:
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
implementing » implemented (Expand Search)
model implementation » modular implementation (Expand Search), world implementation (Expand Search), time implementation (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
implementing » implemented (Expand Search)
-
141
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
Published 2024“…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
-
142
face recognation with Flask
Published 2025“…Built using the <b>Flask</b> web framework (Python), this system provides a lightweight and scalable solution for implementing facial recognition capabilities in real-time or on-demand through a browser interface.…”
-
143
-
144
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
145
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
146
Error reduction over time by the HOFA-SMC.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
147
Comparison of SMC techniques.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
148
Proposed HOFA-SMC with experimental validation.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
149
-
150
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.</p><h3><b>2. …”
-
151
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
152
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
Published 2025“…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. …”
-
153
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
154
Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees
Published 2024“…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”
-
155
Data and software for "Social networks affect redistribution decisions and polarization"
Published 2025“…</p><p dir="ltr">The repository contains data in .csv and .xlsx format, model code in .nlogox Netlogo format, analysis code in .ipynb Jupyter notebooks, and helping code in .py Python files.…”
-
156
Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025)
Published 2025“…<br></p><p dir="ltr">Journal paper introduces RUVPY, a Python software library which implements the Relative Utility Value (RUV) method. …”
-
157
-
158
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
Published 2025“…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”
-
159
-
160