يعرض 221 - 229 نتائج من 229 نتيجة بحث عن '(( python model implementing ) OR ( python model implementation ))', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 221

    IGD-cyberbullying-detection-AI حسب Bryan James (19921044)

    منشور في 2024
    "…[<a href="https://doi.org/10.6084/m9.figshare.27266961" rel="nofollow" target="_blank">https://doi.org/10.6084/m9.figshare.27266961</a>]</p><h2>Table of Contents</h2><ul><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#overview" target="_blank">Overview</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#requirements" target="_blank">Requirements</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#datasets" target="_blank">Datasets</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#installation" target="_blank">Installation</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#running-the-code" target="_blank">Running the Code</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#expected-results" target="_blank">Expected Results</a></li></ul><h2>Overview</h2><p dir="ltr">This repository provides the code for predicting mental health outcomes associated with Internet Gaming Disorder (IGD) and Cyberbullying using machine learning and deep learning models. Models like Logistic Regression, Random Forest, Ensemble Models, CNNs, and LSTMs are implemented to detect patterns from behavioral data.…"
  2. 222

    MSc Personalised Medicine at Ulster University حسب Steven Watterson (100045)

    منشور في 2025
    "…This includes the economic models that underpin big pharma as well the importance of entrepreneurship and small medium enterprises in driving forward healthcare innovation.…"
  3. 223

    Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018) حسب ChenXi Zhu (21374876)

    منشور في 2025
    "…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"
  4. 224

    Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples حسب Derek Lam (11944213)

    منشور في 2025
    "…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
  5. 225

    Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation حسب Stylianos Touloumidis (19938747)

    منشور في 2024
    "…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …"
  6. 226

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) حسب U.S. Forest Service (17476914)

    منشور في 2025
    "…Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). …"
  7. 227

    Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025 حسب Andrew Rogers (17623239)

    منشور في 2025
    "…</p><h2>Software and Spatial Resolution</h2><p dir="ltr">The VRE siting model is implemented using Python and relies heavily on ArcGIS for comprehensive spatial data handling and analysis.…"
  8. 228

    Code حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
  9. 229

    Core data حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"