بدائل البحث:
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
plot representing » thus representing (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
plot representing » thus representing (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
-
241
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
منشور في 2025"…<br><br><b>Missing-Data Handling & Imputation:</b></p><p dir="ltr">The following sequential steps were applied to create a complete and consistent daily time series suitable for analysis (presented in the Imputed_AP_Data_Zurich_2010-25 sheet), particularly addressing the absence of routine PM₂.₅ measurements prior to January 2016. The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …"
-
242
Research Database
منشور في 2025"…</p><p dir="ltr">Statistical analysis was conducted through <b>multiple regression models</b> implemented in <b>Jamovi</b>, supported by Geographic Information System (GIS) tools to visualize spatial patterns. …"
-
243
Data and code for: Automatic fish scale analysis
منشور في 2025"…<p dir="ltr">This dataset accompanies the publication:<br><b>"Automatic fish scale analysis: age determination, annuli and circuli detection, length and weight back-calculation of coregonid scales"</b><br></p><p dir="ltr">It provides all essential data and statistical outputs used for the <b>verification and validation</b> of the <i>Coregon Analyzer</i> – a Python-based algorithm for automated biometric fish scale measurement.…"
-
244
Scripts for pairwise nucleotide identity graphs
منشور في 2024"…Next, a pairwise nucleotide distance matrix was built using a custom python script is available in this folder entitled 'distance'. …"
-
245
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
منشور في 2025"…</li><li><b>4_final_models_pipeline.ipynb</b><br>The final implementation pipeline that loads the data, applies preprocessing and encoding (e.g., latency or ISI), trains the detection models, and stores performance metrics.…"
-
246
Online Resource: Reservoir Computing as a Promising Approach for False Data Injection Attack Detection in Smart Grids
منشور في 2025"…</li><li><b>4_final_models_pipeline.ipynb</b><br>The final implementation pipeline that loads the data, applies preprocessing and encoding (e.g., latency or ISI), trains the detection models, and stores performance metrics.…"
-
247
(A) Sampling locations and ranges of <i>I. feisthamelii</i> (purple) and <i>I. podalirius</i> (teal) butterflies.
منشور في 2025"…(B) Sampling locations of butterflies from the <i>Iphiclides</i> HZ. The dashed line represents the approximate HZ center, based on samples collected by Lafranchis et al. …"
-
248
Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
منشور في 2025"…Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …"
-
249
Raw Data EEG.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
منشور في 2025"…Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …"
-
250
OHID-FF dataset for forest fire detection and classification
منشور في 2025"…</p><p dir="ltr">- Pointed to the `train val scripts/` README for model-specific commands and dependencies.</p>…"
-
251
IGD-cyberbullying-detection-AI
منشور في 2024"…[<a href="https://doi.org/10.6084/m9.figshare.27266961" rel="nofollow" target="_blank">https://doi.org/10.6084/m9.figshare.27266961</a>]</p><h2>Table of Contents</h2><ul><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#overview" target="_blank">Overview</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#requirements" target="_blank">Requirements</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#datasets" target="_blank">Datasets</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#installation" target="_blank">Installation</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#running-the-code" target="_blank">Running the Code</a></li><li><a href="https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI#expected-results" target="_blank">Expected Results</a></li></ul><h2>Overview</h2><p dir="ltr">This repository provides the code for predicting mental health outcomes associated with Internet Gaming Disorder (IGD) and Cyberbullying using machine learning and deep learning models. Models like Logistic Regression, Random Forest, Ensemble Models, CNNs, and LSTMs are implemented to detect patterns from behavioral data.…"
-
252
MSc Personalised Medicine at Ulster University
منشور في 2025"…This includes the economic models that underpin big pharma as well the importance of entrepreneurship and small medium enterprises in driving forward healthcare innovation.…"
-
253
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
منشور في 2025"…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
-
254
Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation
منشور في 2024"…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …"
-
255
VPS13C contributes to ER-SCV contact formation.
منشور في 2025"…<p>a, Representative images of random 2D TEM sections of <i>VPS13C</i> KO and control HeLa cells. …"
-
256
<b>Engineered Muscle-Derived Extracellular Vesicles Boost Insulin Sensitivity and Glucose Regulation</b>
منشور في 2025"…Proteomic analyses were run with Python-V3.9.2 miRNA and protein figures were plotted using R</p>…"
-
257
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
منشور في 2025"…</p><h2>Software and Spatial Resolution</h2><p dir="ltr">The VRE siting model is implemented using Python and relies heavily on ArcGIS for comprehensive spatial data handling and analysis.…"
-
258
Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018)
منشور في 2025"…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"
-
259
Code
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
-
260
Core data
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"