Search alternatives:
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
model implementing » model implemented (Expand Search), model implementation (Expand Search), model representing (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
python time » python files (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
model implementing » model implemented (Expand Search), model implementation (Expand Search), model representing (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
python time » python files (Expand Search)
-
21
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
22
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
23
-
24
Graphical abstract of HCAP.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
25
Recall analysis.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
26
Convergence rate analysis.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
27
Computational efficiency.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
28
Analysis of IoMT data sources.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
29
Prediction accuracy on varying attack types.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
30
<b> </b> Precision analysis.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
31
Impact of cyberattack types on IoMT devices.
Published 2025“…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …”
-
32
Workflow of a typical Epydemix run.
Published 2025“…<div><p>We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. …”
-
33
-
34
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
Published 2025“…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
-
35
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
Published 2025“…The work advances national AI autonomy, real-time cognitive context modeling, and ethical human-AI integration.…”
-
36
-
37
-
38
Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection
Published 2025“…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…”
-
39
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
Published 2025“…<p dir="ltr">This deposit provides the Python notebook and the input dataset used in the study “Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil).” …”
-
40
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”