بدائل البحث:
model predictive » model predictions (توسيع البحث)
code presented » model presented (توسيع البحث), side presented (توسيع البحث), order presented (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
model predictive » model predictions (توسيع البحث)
code presented » model presented (توسيع البحث), side presented (توسيع البحث), order presented (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
-
61
-
62
Fig 4. - mdciao: Accessible Analysis and Visualization of Molecular Dynamics Simulation Data
منشور في 2025الموضوعات: -
63
-
64
-
65
Distribution of closest heavy-atom—heavy-atom distances over five different MD datasets (S1 Table).
منشور في 2025الموضوعات: -
66
Complete text output printed to the terminal by the CLT (shown in Fig 2A) of the main text.
منشور في 2025الموضوعات: -
67
-
68
Table 1 - mdciao: Accessible Analysis and Visualization of Molecular Dynamics Simulation Data
منشور في 2025الموضوعات: -
69
-
70
-
71
-
72
PyGMT – Accessing and Integrating GMT with Python and the Scientific Python Ecosystem (AGU24, U12B-05)
منشور في 2024"…</p><p dir="ltr">PyGMT (<a href="https://www.pygmt.org/" target="_blank">https://www.pygmt.org/</a>) wraps around the very fast GMT C code to make it accessible through the Python programming language. …"
-
73
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
-
74
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
-
75
Table 1_Entropy-adaptive differential privacy federated learning for student performance prediction and privacy protection: a case study in Python programming.docx
منشور في 2025"…This study proposes an Entropy-Adaptive Differential Privacy Federated Learning method (EADP-FedAvg) to enhance the accuracy of student performance prediction while ensuring data privacy. Based on online test records from Python programming courses for Electronic Engineering students (grade 2021–2023) at the School of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, China, the study uses a Multilayer Perceptron (MLP) model and 10 distributed clients for training. …"
-
76
-
77
-
78
-
79
-
80