يعرض 101 - 120 نتائج من 254 نتيجة بحث عن '(( python model representing ) OR ( python code implementation ))', وقت الاستعلام: 0.28s تنقيح النتائج
  1. 101

    Code for High-quality Human Activity Intensity Maps in China from 2000-2020 حسب Wenqi Xie (18273238)

    منشور في 2025
    "…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …"
  2. 102

    The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network" حسب Chongshan Wan (19247614)

    منشور في 2024
    "…Each lane includes 'geometry' and 'inter_id' attributes.</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …"
  3. 103

    MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing حسب Carl-Hendrik Peters (21530624)

    منشور في 2025
    "…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…"
  4. 104
  5. 105

    Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving" حسب Basem Ahmed (18127861)

    منشور في 2025
    "…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…"
  6. 106

    Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats حسب Raul MATSUSHITA (10276562)

    منشور في 2024
    "…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
  7. 107

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  8. 108

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  9. 109

    Data features examined for potential biases. حسب Harry Hochheiser (3413396)

    منشور في 2025
    "…Representativeness of the population, differences in calibration and model performance among groups, and differences in performance across hospital settings were identified as possible sources of bias.…"
  10. 110

    Analysis topics. حسب Harry Hochheiser (3413396)

    منشور في 2025
    "…Representativeness of the population, differences in calibration and model performance among groups, and differences in performance across hospital settings were identified as possible sources of bias.…"
  11. 111

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> حسب Pajtim Zariqi (22155799)

    منشور في 2025
    "…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…"
  12. 112

    <b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b> حسب Marly G F Costa (19812192)

    منشور في 2025
    "…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"
  13. 113

    JASPEX model حسب Olugbenga OLUWAGBEMI (21403187)

    منشور في 2025
    "…</p><p dir="ltr">We wrote new sets of python codes and developed python programming codes to rework on the map to generate the coloured map of Southwest Nigeria from the map of Nigeria (which represented the region of our study). …"
  14. 114

    Datasets To EVAL. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  15. 115

    Statistical significance test results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  16. 116

    How RAG work. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  17. 117

    OpenBookQA experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  18. 118

    AI2_ARC experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  19. 119

    TQA experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  20. 120

    E-EVAL experimental results. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"