بدائل البحث:
time implementation » _ implementation (توسيع البحث), policy implementation (توسيع البحث), effective implementation (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
python time » python files (توسيع البحث)
time implementation » _ implementation (توسيع البحث), policy implementation (توسيع البحث), effective implementation (توسيع البحث)
python model » python code (توسيع البحث), python tool (توسيع البحث), action model (توسيع البحث)
python time » python files (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
منشور في 2025"…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …"
-
7
-
8
Summary of Tourism Dataset.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
9
Segment-wise Spending Analysis.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
10
Hyperparameter Parameter Setting.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
11
Marketing Campaign Analysis.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
12
Visitor Segmentation Validation Accuracy.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
13
Integration of VAE and RNN Architecture.
منشور في 2025"…The proposed TourVaRNN integrates variational autoencoders to capture latent variables representing visitor preferences and spending habits, while recurrent neural networks model complex temporal dependencies in tourism data. …"
-
14
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
منشور في 2025"…</p><p dir="ltr">The perceptual decision-making data were collected from 5 different cohorts of mice at different time-points during their active phase of the day. …"
-
15
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
منشور في 2025"…</p><p>***********************************************************************************************************************************</p><p dir="ltr"><b>NOTE: </b>The recently released Future Global Aridity Index and PET Database (CMIP_6) is now available at:</p><p dir="ltr">https://doi.org/10.57760/sciencedb.nbsdc.00086</p><p dir="ltr">High-resolution (30 arc-seconds) global raster datasets of average monthly and annual potential evapotranspiration (PET) and aridity index (AI) for two historical (1960-1990; 1970-2000) and two future (2021-2040; 2041-2060) time periods for each of 22 CIMP6 Earth System Models across four emission scenarios (SSP: 126, 245, 370, 585). …"
-
16
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
منشور في 2025"…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
-
17
Code
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
-
18
Core data
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"