Search alternatives:
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
models represent » model representing (Expand Search), model presents (Expand Search), lines represent (Expand Search)
python models » motion models (Expand Search), pelton models (Expand Search)
code implementation » model implementation (Expand Search), time implementation (Expand Search), world implementation (Expand Search)
models represent » model representing (Expand Search), model presents (Expand Search), lines represent (Expand Search)
python models » motion models (Expand Search), pelton models (Expand Search)
-
121
ScienceQA experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
122
Code interpreter with LLM.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
123
<b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b>
Published 2025“…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…”
-
124
<b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b>
Published 2025“…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …”
-
125
JASPEX model
Published 2025“…</p><p dir="ltr">We wrote new sets of python codes and developed python programming codes to rework on the map to generate the coloured map of Southwest Nigeria from the map of Nigeria (which represented the region of our study). …”
-
126
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…Attached is the micro-emotion annotation code based on pytorch, which can be used to annotate the Goemotions dataset by yourself, or predict the emotion classification based on the annotation results. …”
-
127
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
128
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
129
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
130
Scope of our collection of pathogen models of metabolism.
Published 2024“…The average MEMOTE score across models is 84% (d–f) Boxplots representing the spread of genes, reactions, and metabolites in each model, classified by phylum. …”
-
131
Advancing Solar Magnetic Field Modeling
Published 2025“…<br><br>We developed a significantly faster Python code built upon a functional optimization framework previously proposed and implemented by our team. …”
-
132
High-Throughput Mass Spectral Library Searching of Small Molecules in R with NIST MSPepSearch
Published 2025“…Despite the availability of numerous library search algorithms, those developed by NIST and implemented in MS Search remain predominant, partly because commercial databases (e.g., NIST, Wiley) are distributed in proprietary formats inaccessible to custom code. …”
-
133
Comparison data 7 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
134
Sample data for <i>Neolamprologus multifasciatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
135
Sample data for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
136
Comparison data 3 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
137
Sample data for <i>Telmatochromis temporalis</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
138
Comparison data 4 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
139
Comparison data 1 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
140
Comparison data 2 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”