بدائل البحث:
modular implementation » world implementation (توسيع البحث)
model implementation » world implementation (توسيع البحث), time implementation (توسيع البحث), policy implementation (توسيع البحث)
code implementation » time implementation (توسيع البحث), world implementation (توسيع البحث), _ implementation (توسيع البحث)
modular implementation » world implementation (توسيع البحث)
model implementation » world implementation (توسيع البحث), time implementation (توسيع البحث), policy implementation (توسيع البحث)
code implementation » time implementation (توسيع البحث), world implementation (توسيع البحث), _ implementation (توسيع البحث)
-
81
-
82
Code
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
-
83
-
84
-
85
Scripts, data and figures underpinning 'Towards the Creation of Legible Octilinear Power Grid Diagrams Using Mixed Integer Linear Programming'
منشور في 2024"…<p dir="ltr">These Python notebooks implement the techniques described in the paper "Towards the Creation of Legible Octilinear Power Grid Diagrams Using Mixed Integer Linear Programming".…"
-
86
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
منشور في 2025"…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
-
87
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
منشور في 2025"…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
-
88
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
منشور في 2025"…We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
-
89
Code and data for reproducing the results in the original paper of DML-Geo
منشور في 2025"…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…"
-
90
-
91
Reproducible Code and Data for figures
منشور في 2025"…</i></p><p dir="ltr">It contains:</p><p dir="ltr">✅ <b>Python Code</b> – Scripts used for data preprocessing, and visualization.…"
-
92
software code of NeoDesign
منشور في 2024"…<h2>Implementation and Dependencies</h2><p dir="ltr">neoDesign was developed with python (recommend>3.9) and shell (bash) language. …"
-
93
DA-Faster-RCNN code
منشور في 2025"…The implementation is written in Python using PyTorch and Detectron2.…"
-
94
-
95
Simulation Code and Raw Data
منشور في 2025"…<p dir="ltr">Reproducible code (Python) implementing a symmetrized split-step Fourier method (SSFM), with configuration files for all scans. …"
-
96
The format of the electrode csv file
منشور في 2025"…To enable efficient calculation of extracellular signals from large neural network simulations, we have developed <i>BlueRecording</i>, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. …"
-
97
The format of the simulation reports
منشور في 2025"…To enable efficient calculation of extracellular signals from large neural network simulations, we have developed <i>BlueRecording</i>, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. …"
-
98
Comparison of BlueRecording with existing tools
منشور في 2025"…To enable efficient calculation of extracellular signals from large neural network simulations, we have developed <i>BlueRecording</i>, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. …"
-
99
The format of the weights file
منشور في 2025"…To enable efficient calculation of extracellular signals from large neural network simulations, we have developed <i>BlueRecording</i>, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. …"
-
100
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
منشور في 2024"…</p><h3><b>Model training</b></h3><h4><code>python train_GTN.py</code></h4><p dir="ltr">This step trains the GTN model. …"