Search alternatives:
policy implementation » practical implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
policy implementation » practical implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
21
How RAG work.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
22
OpenBookQA experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
23
AI2_ARC experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
24
TQA experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
25
E-EVAL experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
26
TQA Accuracy Comparison Chart on different LLM.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
27
ScienceQA experimental results.
Published 2025“…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
-
28
-
29
System Hardware ID Generator Script: A Cross-Platform Hardware Identification Tool
Published 2024“…This tool provides <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">code obfuscation in Python</a> and <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank">Python code encryption</a>, enabling developers to <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">protect Python code</a> effectively.…”
-
30
-
31
-
32
-
33
-
34
PTPC-UHT bounce
Published 2025“…<br>It contains the full Python implementation of the PTPC bounce model (<code>PTPC_UHT_bounce.py</code>) and representative outputs used to generate the figures in the paper. …”
-
35
-
36
-
37
-
38
-
39
Heatmap showing the simulated output of the XOR circuit by Tamsir <i>et al</i>. [11].
Published 2025Subjects: -
40
Simulation results for the phage communication circuit from Pathania <i>et al</i>. [5].
Published 2025Subjects: