بدائل البحث:
policy implementation » practical implementation (توسيع البحث)
code presented » model presented (توسيع البحث), side presented (توسيع البحث), order presented (توسيع البحث)
policy implementation » practical implementation (توسيع البحث)
code presented » model presented (توسيع البحث), side presented (توسيع البحث), order presented (توسيع البحث)
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
132
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
133
Code for the HIVE Appendicitis prediction modelRepository with LLM_data_extractor_optuna for automated feature extraction
منشور في 2025"…</p><p dir="ltr"><b>LLM Data Extractor optuna repo</b> is a Python framework for generating and evaluating clinical text predictions using large language models (LLMs) like <code>qwen2.5</code>. …"
-
134
Quetzal: Comprehensive Peptide Fragmentation Annotation and Visualization
منشور في 2025"…We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. …"
-
135
Quetzal: Comprehensive Peptide Fragmentation Annotation and Visualization
منشور في 2025"…We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. …"
-
136
-
137
-
138
Research Data and Code on Characteristics and Drivers of Plant Diversity in Viaduct Footprint Spaces of a Mountainous, High-Density City—A Case Study of Central Chongqing
منشور في 2025"…</li><li>Derived data including calculated plant diversity metrics and environmental factor data.</li><li>R and python code used for statistical analysis.</li></ul><p dir="ltr">Data collection was conducted through on-site field surveys in the central urban area of Chongqing, China, from April to October 2024.…"
-
139
Anisotropic Skyrmion and Multi-<i>q </i>Spin Dynamics in Centrosymmetric Gd<sub>2</sub>PdSi<sub>3</sub>: Data and Code
منشور في 2024"…Python script file<br>*.dat, [no extension] ... ASCII data file. …"
-
140
Data and analysis code for manuscript "Preparations for ultra-high dose rate 25-90 MeV electron irradiation experiments with a compact, high-peak-current, X-band linear accelerator...
منشور في 2024"…</p><p dir="ltr">The environment.yml file can create a conda virtual environment named "prep4vhee" with the required Python version and dependencies using the following conda command:</p><pre>conda env create -f environment.yml<br></pre><p dir="ltr">TOPAS input decks are also included in some folders with seeds set to reproduce Monte Carlo simulation results presented in the manuscript. …"