يعرض 121 - 140 نتائج من 242 نتيجة بحث عن '(( python policy implementation ) OR ( python code presented ))', وقت الاستعلام: 0.24s تنقيح النتائج
  1. 121

    Example Diagram. حسب Nan Ru (9594384)

    منشور في 2025
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127
  8. 128
  9. 129
  10. 130
  11. 131

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  12. 132

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  13. 133

    Code for the HIVE Appendicitis prediction modelRepository with LLM_data_extractor_optuna for automated feature extraction حسب Anoeska Schipper (18513465)

    منشور في 2025
    "…</p><p dir="ltr"><b>LLM Data Extractor optuna repo</b> is a Python framework for generating and evaluating clinical text predictions using large language models (LLMs) like <code>qwen2.5</code>. …"
  14. 134

    Quetzal: Comprehensive Peptide Fragmentation Annotation and Visualization حسب Eric W. Deutsch (13887)

    منشور في 2025
    "…We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. …"
  15. 135

    Quetzal: Comprehensive Peptide Fragmentation Annotation and Visualization حسب Eric W. Deutsch (13887)

    منشور في 2025
    "…We describe how Quetzal annotates spectra using the new Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) mzPAF standard for fragment ion peak annotation, including the Python-based code, a web-service end point that provides annotation services, and a web-based application for annotating spectra and producing publication-quality figures. …"
  16. 136
  17. 137
  18. 138

    Research Data and Code on Characteristics and Drivers of Plant Diversity in Viaduct Footprint Spaces of a Mountainous, High-Density City—A Case Study of Central Chongqing حسب Junjie Zhang (355622)

    منشور في 2025
    "…</li><li>Derived data including calculated plant diversity metrics and environmental factor data.</li><li>R and python code used for statistical analysis.</li></ul><p dir="ltr">Data collection was conducted through on-site field surveys in the central urban area of Chongqing, China, from April to October 2024.…"
  19. 139
  20. 140

    Data and analysis code for manuscript "Preparations for ultra-high dose rate 25-90 MeV electron irradiation experiments with a compact, high-peak-current, X-band linear accelerator... حسب Haytham Effarah (11979509)

    منشور في 2024
    "…</p><p dir="ltr">The environment.yml file can create a conda virtual environment named "prep4vhee" with the required Python version and dependencies using the following conda command:</p><pre>conda env create -f environment.yml<br></pre><p dir="ltr">TOPAS input decks are also included in some folders with seeds set to reproduce Monte Carlo simulation results presented in the manuscript. …"