Showing 101 - 120 results of 288 for search '(( python proof implementation ) OR ( ((python model) OR (python code)) implementation ))', query time: 0.38s Refine Results
  1. 101

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> by Pajtim Zariqi (22155799)

    Published 2025
    “…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…”
  2. 102

    Simple implementation examples of agent AI on free energy calculation and phase-field simulation by Toshiyuki Koyama (22828581)

    Published 2025
    “…</p> <p>Using Gibbs energy calculations and diffusion simulations as examples, we demonstrated the implementation method and usefulness of simple agent AI, where sample python codes are distributed as supplemental materials.…”
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107
  8. 108
  9. 109
  10. 110
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…</li><li>The <b>CIPrediction</b> folder contains model training code.</li><li>The <b>ParallelComputation</b> folder contains geographic computation code.…”
  19. 119

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…</li><li>The <b>CIPrediction</b> folder contains model training code.</li><li>The <b>ParallelComputation</b> folder contains geographic computation code.…”
  20. 120

    Data and code for: Automatic fish scale analysis by Christian Vogelmann (21646472)

    Published 2025
    “…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …”