بدائل البحث:
proof implementation » prior implementations (توسيع البحث), pilot implementation (توسيع البحث), broad implementation (توسيع البحث)
pre implementation » time implementation (توسيع البحث), _ implementation (توسيع البحث), new implementation (توسيع البحث)
python proof » method proof (توسيع البحث), python tool (توسيع البحث)
proof implementation » prior implementations (توسيع البحث), pilot implementation (توسيع البحث), broad implementation (توسيع البحث)
pre implementation » time implementation (توسيع البحث), _ implementation (توسيع البحث), new implementation (توسيع البحث)
python proof » method proof (توسيع البحث), python tool (توسيع البحث)
-
21
Concurrent spin squeezing and field tracking with machine learning
منشور في 2025"…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …"
-
22
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
منشور في 2025"…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…"
-
23
Global Graph Dataset
منشور في 2025"…These functionalities have been implemented with the Urbanity python package which provides functionalities for saving, loading, visualising, processing, and converting urban graphs to machine learning friendly formats (PyG and DGL). …"
-
24
kececilayout
منشور في 2025"…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…"
-
25
Concurrent spin squeezing and field tracking with machine learning
منشور في 2025"…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …"
-
26
IGD-cyberbullying-detection-AI
منشور في 2024"…</p><pre>pip install -r requirements.txt</pre><h2>Datasets</h2><p dir="ltr">The repository contains preprocessed datasets for both <b>Cyberbullying detection</b> and <b>IGD</b>. …"
-
27
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…The proposed DIDS-BRBPNN-BBWOA-IoT method is implemented using Python. The performance of the DIDS-BRBPNN-BBWOA-IoT approach is examined using performance metrics like accuracy, precision, recall, f1-score, specificity, error rate; computation time, and ROC. …"
-
28
Data and code for: Automatic fish scale analysis
منشور في 2025"…<p dir="ltr">This dataset accompanies the publication:<br><b>"Automatic fish scale analysis: age determination, annuli and circuli detection, length and weight back-calculation of coregonid scales"</b><br></p><p dir="ltr">It provides all essential data and statistical outputs used for the <b>verification and validation</b> of the <i>Coregon Analyzer</i> – a Python-based algorithm for automated biometric fish scale measurement.…"
-
29
Core-Based Smart Sampling Framework: A Theoretical and Experimental Study on Randomized Partitioning for SAT Problems
منشور في 2025"…We provide theoretical guarantees on complexity reduction and probabilistic completeness, apply the method to SAT instances, and evaluate its performance using experimental Python implementations. The results show that smart sampling drastically reduces the effective complexity of SAT problems and offers new insights into the structure of NP-complete problems.…"
-
30
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
منشور في 2025"…<br><br><b>Missing-Data Handling & Imputation:</b></p><p dir="ltr">The following sequential steps were applied to create a complete and consistent daily time series suitable for analysis (presented in the Imputed_AP_Data_Zurich_2010-25 sheet), particularly addressing the absence of routine PM₂.₅ measurements prior to January 2016. The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …"
-
31
Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018)
منشور في 2025"…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"