Showing 1 - 20 results of 41 for search '(( python rich implementation ) OR ( python assess implementation ))', query time: 0.25s Refine Results
  1. 1

    Example change statistic implementations. by Alex Stivala (8356257)

    Published 2024
    “…This work introduces ALAAMEE, open-source Python software for estimation, simulation, and goodness-of-fit testing for ALAAM models. …”
  2. 2
  3. 3

    BSTPP: a python package for Bayesian spatiotemporal point processes by Isaac Manring (20705955)

    Published 2025
    “…However, they are sometimes neglected due to the difficulty of implementing them. There is a lack of packages with the ability to perform inference for these models, particularly in python. …”
  4. 4
  5. 5
  6. 6
  7. 7

    Supporting data for "Interpreting complex ecological patterns and processes across differentscales using Artificial Intelligence" by Yifei Gu (9507104)

    Published 2025
    “…</p><p dir="ltr">Firstly, a Python package HSC3D, was developed to quantify habitat structural complexity (HSC) at the community level. …”
  8. 8

    Overview of deep learning terminology. by Aaron E. Maxwell (8840882)

    Published 2024
    “…UNet-based models are provided with a variety of optional ancillary modules or modifications. Common assessment metrics (i.e., overall accuracy, class-level recalls or producer’s accuracies, class-level precisions or user’s accuracies, and class-level F1-scores) are implemented along with a modified version of the unified focal loss framework, which allows for defining a variety of loss metrics using one consistent implementation and set of hyperparameters. …”
  9. 9
  10. 10
  11. 11

    Summary of Tourism Dataset. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  12. 12

    Segment-wise Spending Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  13. 13

    Hyperparameter Parameter Setting. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  14. 14

    Marketing Campaign Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  15. 15

    Visitor Segmentation Validation Accuracy. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  16. 16

    Integration of VAE and RNN Architecture. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  17. 17

    Missing Value Imputation in Relational Data Using Variational Inference by Simon Fontaine (7046618)

    Published 2025
    “…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
  18. 18

    Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event by Thomas Clemens Carmine (19756929)

    Published 2025
    “…<br><br><b>Missing-Data Handling & Imputation:</b></p><p dir="ltr">The following sequential steps were applied to create a complete and consistent daily time series suitable for analysis (presented in the Imputed_AP_Data_Zurich_2010-25 sheet), particularly addressing the absence of routine PM₂.₅ measurements prior to January 2016. The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …”
  19. 19

    Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees by Mohamad Elmasri (19421498)

    Published 2024
    “…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”
  20. 20

    Gene Editing using Transformer Architecture by Rishabh Garg (5261744)

    Published 2025
    “…</p><p dir="ltr">Once TASAG detects a deviation from a reference sequence (e.g., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”