يعرض 161 - 180 نتائج من 753 نتيجة بحث عن '(( python study presented ) OR ( python code predicted ))', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 161

    Table_1_XCast: A python climate forecasting toolkit.docx حسب Kyle Joseph Chen Hall (13049001)

    منشور في 2022
    "…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
  2. 162

    Table_2_XCast: A python climate forecasting toolkit.docx حسب Kyle Joseph Chen Hall (13049001)

    منشور في 2022
    "…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
  3. 163

    Table_1_XCast: A python climate forecasting toolkit.docx حسب Kyle Joseph Chen Hall (13049001)

    منشور في 2022
    "…These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. …"
  4. 164

    FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test Code Repair حسب Sakina Fatima (15362704)

    منشور في 2025
    "…<p dir="ltr">This is the replication package associated with the paper: 'FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test for Code Repair'</p><p><br></p><p dir="ltr">### Requirements</p><p dir="ltr">This is a list of all required python packages:</p><p dir="ltr">-imbalanced_learn==0.8.1</p><p dir="ltr">-numpy==1.19.5</p><p dir="ltr">-pandas==1.3.3</p><p dir="ltr">-transformers==4.10.2</p><p dir="ltr">-torch==1.5.0</p><p dir="ltr">-scikit_learn==0.24.2</p><p dir="ltr">-openai==v0.28.1</p><p><br></p><p dir="ltr">#Automated tool for labelling dataset with flaky test fix categories</p><p><br></p><p dir="ltr">This is a step-by-step guideline for automatically labelling dataset with flaky test fix categories</p><p><br></p><p><br></p><p dir="ltr">### Input Files:</p><p dir="ltr">This is a an input file that is required to accomplish this step:</p><p dir="ltr">* Data/IdoFT_dataset_filtered.csv</p><p dir="ltr">https://figshare.com/s/47f0fb6207ac3f9e2351</p><p><br></p><p dir="ltr">### Output Files:</p><p dir="ltr">* Results/IdoFT_dataset_filtered.csv</p><p><br></p><p><br></p><p dir="ltr">### Replicating the experiment</p><p><br></p><p dir="ltr">This experiment can be executed using the following commands after navigating to the `Code\` folder:</p><p><br></p><p dir="ltr">```console</p><p dir="ltr">bash Automated_labelling_tool.sh</p><p>```</p><p><br></p><p dir="ltr">It will generate the dataset required to run our prediction models to predict the category of the fix, given a flaky test code</p><p><br></p><p>---</p><p><br></p><p dir="ltr"># Prediction models for fix categories using the test case code</p><p><br></p><p dir="ltr">This is the guideline for replicating the experiments we used to evaluate our prediction models i.e. …"
  5. 165

    PyRates—A Python framework for rate-based neural simulations حسب Richard Gast (8129451)

    منشور في 2019
    "…While many such tools exist for different families of neural models, there is a lack of tools allowing for both a generic model definition and efficiently parallelized simulations. In this work, we present PyRates, a Python framework that provides the means to build a large variety of rate-based neural models. …"
  6. 166
  7. 167
  8. 168

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
  9. 169

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …"
  10. 170

    Code for the HIVE Appendicitis prediction modelRepository with LLM_data_extractor_optuna for automated feature extraction حسب Anoeska Schipper (18513465)

    منشور في 2025
    "…</p><p dir="ltr"><b>LLM Data Extractor optuna repo</b> is a Python framework for generating and evaluating clinical text predictions using large language models (LLMs) like <code>qwen2.5</code>. …"
  11. 171

    PyLandStats: An open-source Pythonic library to compute landscape metrics حسب Martí Bosch (8087852)

    منشور في 2019
    "…This article presents PyLandStats, an open-source Pythonic library to compute landscape metrics within the scientific Python stack. …"
  12. 172

    Emotion diversity in translated versions. حسب Yan Li (23143)

    منشور في 2024
    الموضوعات:
  13. 173
  14. 174
  15. 175
  16. 176

    Word type and tokens in different versions. حسب Yan Li (23143)

    منشور في 2024
    الموضوعات:
  17. 177
  18. 178
  19. 179

    Emotion category. حسب Yan Li (23143)

    منشور في 2024
    الموضوعات:
  20. 180

    Categories of emotions in five translations. حسب Yan Li (23143)

    منشور في 2024
    الموضوعات: