Showing 81 - 100 results of 173 for search '(( python time implementation ) OR ( python code representing ))', query time: 0.28s Refine Results
  1. 81

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. …”
  2. 82

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. …”
  3. 83

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories by Elizaveta Mukhaleva (20602550)

    Published 2025
    “…Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. …”
  4. 84

    Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection by Huichao Yin (14589020)

    Published 2025
    “…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…”
  5. 85
  6. 86
  7. 87

    Data and Code repository for the paper: <b>Visual loom caused by self- or object-movement elicits distinct responses in mouse superior colliculus</b> by Stefano Zucca (21686006)

    Published 2025
    “…Binned rates were transformed into z-scores by normalizing to the mean and standard deviation of firing rate across all stimulus conditions.</p><h2>Code Description</h2><p dir="ltr">Shared code contains both MATLAB and Python functions used in the analysis provided in the study. …”
  8. 88

    Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems by Lakshit Mathur (20894549)

    Published 2025
    “…The work advances national AI autonomy, real-time cognitive context modeling, and ethical human-AI integration.…”
  9. 89
  10. 90
  11. 91

    A Structured Attempt at a Polynomial-Time Solution to the Subset Sum Problem and Its Implications for P vs NP by MInakshi Aggarwal (21677633)

    Published 2025
    “…The manuscript includes theoretical formulation, Python implementation, verified output snapshots, and detailed analysis — aimed at opening fresh discourse on the P vs NP question. …”
  12. 92

    Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout. by Adel Heydarabadipour (22290905)

    Published 2025
    “…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
  13. 93
  14. 94

    Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2) by Tahir Bhatti (20961974)

    Published 2025
    “…The samples (SRR36268464, SRR36225071) were retrieved from the NCBI Sequence Read Archive (SRA) and represent publicly available, real-world viral specimens collected during the final month of 2025, <b>the most recent temporal window available at the time of analysis.…”
  15. 95

    Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series by Andrew M. Thomas (712104)

    Published 2025
    “…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
  16. 96

    MCCN Case Study 3 - Select optimal survey locality by Donald Hobern (21435904)

    Published 2025
    “…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
  17. 97

    Summary of Tourism Dataset. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  18. 98

    Segment-wise Spending Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  19. 99

    Hyperparameter Parameter Setting. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  20. 100

    Marketing Campaign Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”