Search alternatives:
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
consider » considered (Expand Search)
implementing » implemented (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
consider » considered (Expand Search)
implementing » implemented (Expand Search)
-
41
-
42
A Structured Attempt at a Polynomial-Time Solution to the Subset Sum Problem and Its Implications for P vs NP
Published 2025“…The manuscript includes theoretical formulation, Python implementation, verified output snapshots, and detailed analysis — aimed at opening fresh discourse on the P vs NP question. …”
-
43
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
Published 2025“…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
-
44
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
45
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…The samples (SRR36268464, SRR36225071) were retrieved from the NCBI Sequence Read Archive (SRA) and represent publicly available, real-world viral specimens collected during the final month of 2025, <b>the most recent temporal window available at the time of analysis.</b></p><p><br></p><p dir="ltr">Processing was performed using the PEMI-ESC v2.0 bioinformatics pipeline (Python-based, open-source methodology), which includes read quality control (fastp), alignment to NC_045512.2 (BWA-MEM), variant calling (iVar, bcftools), Spike protein reconstruction, and codon-resolved interrogation of five canonical escape positions: R346, S371, K444, F456, and F486.…”
-
46
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
47
Summary of Tourism Dataset.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
48
Segment-wise Spending Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
49
Hyperparameter Parameter Setting.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
50
Marketing Campaign Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
51
Visitor Segmentation Validation Accuracy.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
52
Integration of VAE and RNN Architecture.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
53
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
Published 2025“…The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …”
-
54
Soulware-Lite
Published 2025“…It operates as middleware to intercept user inputs and LLM outputs, performing real-time semantic auditing, belief-state tracking, introspective alignment scoring (KRW, deltaΨ), and automated self-correction.…”
-
55
PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units
Published 2025“…We report the development and implementation of electronic excited-state capabilities for semiempirical quantum chemical methods at both the Configuration Interaction Singles and Time-Dependent Hartree–Fock levels of theory, integrated within the PYSEQM 2.0 software package (https://github.com/lanl/PYSEQM). …”
-
56
A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture
Published 2025“…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
-
57
Computational performance analysis script.
Published 2025“…<p>Python implementation for computational performance evaluation and timing analysis.…”
-
58
Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr
Published 2025“…Our implementation shows processing time reductions of up to 210× compared to traditional workflows, even on standard hardware. …”
-
59
Table 1_Analysis of distribution equilibrium and influencing factors for older adult meal service facilities in mainland China.xlsx
Published 2025“…Objective<p>Analyze the distribution equilibrium of older adult meal service facilities in mainland China and explore the factors influencing their distribution.</p>Methods<p>Use Python to obtain data on older adult meal service facilities, and analyze the equity of older adult meal services using descriptive statistics, the Lorenz curve, the Gini coefficient, and the Spatial Mismatch Index (SMI). …”
-
60
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
Published 2024“…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …”