Search alternatives:
model implementation » modular implementation (Expand Search), world implementation (Expand Search), policy implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
python time » python files (Expand Search)
model implementation » modular implementation (Expand Search), world implementation (Expand Search), policy implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python model » python code (Expand Search), python tool (Expand Search), action model (Expand Search)
python time » python files (Expand Search)
-
141
Segment-wise Spending Analysis.
Published 2025“…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
142
Hyperparameter Parameter Setting.
Published 2025“…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
143
Marketing Campaign Analysis.
Published 2025“…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
144
Visitor Segmentation Validation Accuracy.
Published 2025“…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
145
Integration of VAE and RNN Architecture.
Published 2025“…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
146
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.</p><h3><b>2. …”
-
147
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
148
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
149
-
150
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
151
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
Published 2025“…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. …”
-
152
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
153
Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees
Published 2024“…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”
-
154
Data and software for "Social networks affect redistribution decisions and polarization"
Published 2025“…</p><p dir="ltr">The repository contains data in .csv and .xlsx format, model code in .nlogox Netlogo format, analysis code in .ipynb Jupyter notebooks, and helping code in .py Python files.…”
-
155
Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025)
Published 2025“…<br></p><p dir="ltr">Journal paper introduces RUVPY, a Python software library which implements the Relative Utility Value (RUV) method. …”
-
156
-
157
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
Published 2025“…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”
-
158
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…The database also includes three averaged multi-model ensembles produced for each of the four emission scenarios:</p><p>**************************************************************************************************************************</p><p dir="ltr">The Global Aridity Index (Global-AI) and Global Reference Evapo-Transpiration (Global-ET0) datasets provided in Version 3.1 of the Global Aridity Index and Potential Evapo-Transpiration (ET0) Database (Global-AI_PET_v3.x1) provide high-resolution (30 arc-seconds) global raster data for the 1970-2000 period, related to evapotranspiration processes and rainfall deficit for potential vegetative growth, based upon implementation of the FAO-56 Penman-Monteith Reference Evapotranspiration (ET<sub>0</sub>) equation.…”
-
159
-
160
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…”