Showing 121 - 140 results of 167 for search '(( python tool implementation ) OR ( python code implementing ))', query time: 0.28s Refine Results
  1. 121

    Demonstration of Isosteric Heat of Adsorption Calculation using AIFs and pyGAPs by Jack Evans (11275386)

    Published 2025
    “…</p><p dir="ltr">The calculation is performed using the Clausius-Clapeyron method as implemented in the <code><strong>pyGAPS</strong></code> Python library for adsorption science. …”
  2. 122

    <b>Algorithm Pseudocode</b> by Yibin Zhao (22425801)

    Published 2025
    “…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
  3. 123

    <b>Anonymous, runnable artifact for </b><b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints: A Problem‑Driven Multi‑Layer Approach</b> by Nariman Mani (21380459)

    Published 2025
    “…</b> The anonymized archive includes a dependency‑free Python implementation of all five layers (oracle, coverage, drift mapping, prioritization, resource scheduling), an orchestrator, and synthetic datasets with 50 test cases per sub‑application (LLM assistant, retrieval with citation, vision calories, notification/social). …”
  4. 124

    <b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints</b> by Nariman Mani (21380459)

    Published 2025
    “…<ul><li>A <b>Python repo</b> with minimal implementations of all five layers<br>(<b>COL</b>, <b>SCL</b>, <b>CDM</b>, <b>RPE</b>, <b>RAS</b>) plus an <b>orchestrator</b> and utilities.…”
  5. 125

    Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space by chenchen Guo (21327470)

    Published 2025
    “…</p><h3>Requirements</h3><ul><li>Python 3.7</li><li>PyTorch 1.10.0 & CUDA 11.8</li></ul><h3>Main Result Running commands:</h3><p dir="ltr">Execute <code>.sh: bash .…”
  6. 126

    Folder with all data and algorithms by Jorge Servert Lerdo de Tejada (22290001)

    Published 2025
    “…<p dir="ltr">Spatially Offset Raman Spectroscopy (SORS) has emerged as a potential tool for non-invasive biomedical diagnostics, enabling molecularly specific probing of subsurface tissues. …”
  7. 127

    adnus by Mehmet Keçeci (14301782)

    Published 2025
    “…<p dir="ltr">adnus (AdNuS): Advanced Number Systems</p><p dir="ltr">adnus is a Python library that provides an implementation of various advanced number systems. …”
  8. 128

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  9. 129

    Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas by Pedro Cabral (18947566)

    Published 2025
    “…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”
  10. 130

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  11. 131

    kececilayout by Mehmet Keçeci (14301782)

    Published 2025
    “…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”
  12. 132

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) by Wubin Ding (11823941)

    Published 2025
    “…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
  13. 133

    IGD-cyberbullying-detection-AI by Bryan James (19921044)

    Published 2024
    “…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
  14. 134

    Overview of generalized weighted averages. by Nobuhito Manome (8882084)

    Published 2025
    “…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
  15. 135

    Spotted owl habitat quality maps and disturbance attribution analysis by Josh Barry (7573823)

    Published 2025
    “…<p dir="ltr">This dataset includes annual spatial maps of spotted owl nesting habitat quality in Southern California and an accompanying ArcPython script used to attribute negative annual habitat change to wildfire (Barry et al., 2025). …”
  16. 136

    Automatic data reduction for the typical astronomer by Bradford Holden (21789524)

    Published 2025
    “…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
  17. 137

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  18. 138

    Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
  19. 139

    Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
  20. 140

    Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”