Search alternatives:
tool implementation » world implementation (Expand Search), model implementation (Expand Search), proof implementation (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
tool implementation » world implementation (Expand Search), model implementation (Expand Search), proof implementation (Expand Search)
from implementing » after implementing (Expand Search), _ implementing (Expand Search)
-
161
PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units
Published 2025“…PYSEQM is a Python-based package designed for efficient and scalable quantum chemical simulations. …”
-
162
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
Published 2025“…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …”
-
163
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…We are grateful for the numerous feedback from users and in particular to Dr. Pushpendra Raghav, Research Scientist, Department of Civil Engineering, University of Alabama, for identifying and bringing this issue to our attention. …”
-
164
Copy number contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
165
Gene mutation contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
166
Resistant & sensitive cell line Info on AZD5991.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
167
Resistant & sensitive drug info on COLO800.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
168
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
169
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
170
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
171
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
172
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…</p><p dir="ltr"><b>rslt.pkl</b>: A pickled Python object that stores the explainer based on geoshapley for dataset 1.…”
-
173
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…The proposed DIDS-BRBPNN-BBWOA-IoT method is implemented using Python. The performance of the DIDS-BRBPNN-BBWOA-IoT approach is examined using performance metrics like accuracy, precision, recall, f1-score, specificity, error rate; computation time, and ROC. …”
-
174
SpatialKNifeY analysis landscape.
Published 2025“…(B) Implementation of SpatialKNifeY (SKNY). A Python library of SKNY depends on stlearn [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref023" target="_blank">23</a>] and scanpy [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref009" target="_blank">9</a>] functions (see “Methods”) and AnnData object programming [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref010" target="_blank">10</a>]. …”
-
175
MSc Personalised Medicine at Ulster University
Published 2025“…</p><p dir="ltr">The programme has oversight from a dedicated Employer Advisory Board, comprising over 15 industrial partners located throughout the UK, Ireland and the US.…”
-
176
Data and code for: Automatic fish scale analysis
Published 2025“…GUI, pre/post-processing) is available upon request from the authors and is not included here.</i></li></ul></li><li><b>README.txt</b> – detailed file explanations and usage instructions</li></ul><p dir="ltr">The full statistical analysis and visualization pipeline is implemented in R and hosted on GitHub:<br>https://github.com/Birdy332/Automatic-fish-scale-analysis-r-scripts</p><p dir="ltr"><br></p><p dir="ltr">All figures shown in the manuscript can be reproduced using these scripts and the datasets provided here.…”
-
177
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…The labeling of emotion datasets has changed from discrete to continuous. It plays an important role in the subtle research of emotions in fields such as emotional computing, human-computer alignment, humanoid robots, and psychology.…”
-
178
CNG-ARCO-RADAR.pdf
Published 2025“…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …”
-
179
“Genie Replication Package: Resolution of Kryptos K4 via Berlin Clock Route and Substitution Funnel”
Published 2025“…</li></ul></li></ol><h3>Contributions</h3><ul><li>Provides a <b>self-contained Python package</b> enabling independent replication and stress-testing of the solution.…”
-
180
kececilayout
Published 2025“…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”