Showing 161 - 180 results of 184 for search '(( python tool implementing ) OR ( python from implementing ))', query time: 0.32s Refine Results
  1. 161

    Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples by Derek Lam (11944213)

    Published 2025
    “…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …”
  2. 162

    Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1 by Robert Zomer (12796235)

    Published 2025
    “…We are grateful for the numerous feedback from users and in particular to Dr. Pushpendra Raghav, Research Scientist, Department of Civil Engineering, University of Alabama, for identifying and bringing this issue to our attention. …”
  3. 163

    Copy number contingency table. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  4. 164

    Gene mutation contingency table. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  5. 165

    Resistant & sensitive cell line Info on AZD5991. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  6. 166

    Resistant & sensitive drug info on COLO800. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  7. 167

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
  8. 168

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" by FirstName LastName (20554465)

    Published 2025
    “…The model results are saved in <code>1point2dem/SampleGeneration/result</code>, and the results for <b>Table 3</b> in the paper are derived from this output.</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
  9. 169

    Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  10. 170

    Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  11. 171

    Code and data for reproducing the results in the original paper of DML-Geo by Pengfei CHEN (8059976)

    Published 2025
    “…</p><p dir="ltr"><b>rslt.pkl</b>: A pickled Python object that stores the explainer based on geoshapley for dataset 1.…”
  12. 172

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things by Ashok Kumar K (21441108)

    Published 2025
    “…The proposed DIDS-BRBPNN-BBWOA-IoT method is implemented using Python. The performance of the DIDS-BRBPNN-BBWOA-IoT approach is examined using performance metrics like accuracy, precision, recall, f1-score, specificity, error rate; computation time, and ROC. …”
  13. 173

    PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation by David Lewis Stewart Parry (22188211)

    Published 2025
    “…The included Python scripts simulate a low-RAM cosmological oscillator that evolves through successive nonsingular “bounces,” demonstrating a self-consistent cyclic universe in which curvature, tension, and entropy reset in finite, periodic intervals. …”
  14. 174

    SpatialKNifeY analysis landscape. by Shunsuke A. Sakai (13789939)

    Published 2025
    “…(B) Implementation of SpatialKNifeY (SKNY). A Python library of SKNY depends on stlearn [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref023" target="_blank">23</a>] and scanpy [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref009" target="_blank">9</a>] functions (see “Methods”) and AnnData object programming [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012854#pcbi.1012854.ref010" target="_blank">10</a>]. …”
  15. 175

    MSc Personalised Medicine at Ulster University by Steven Watterson (100045)

    Published 2025
    “…</p><p dir="ltr">The programme has oversight from a dedicated Employer Advisory Board, comprising over 15 industrial partners located throughout the UK, Ireland and the US.…”
  16. 176

    Data and code for: Automatic fish scale analysis by Christian Vogelmann (21646472)

    Published 2025
    “…GUI, pre/post-processing) is available upon request from the authors and is not included here.</i></li></ul></li><li><b>README.txt</b> – detailed file explanations and usage instructions</li></ul><p dir="ltr">The full statistical analysis and visualization pipeline is implemented in R and hosted on GitHub:<br>https://github.com/Birdy332/Automatic-fish-scale-analysis-r-scripts</p><p dir="ltr"><br></p><p dir="ltr">All figures shown in the manuscript can be reproduced using these scripts and the datasets provided here.…”
  17. 177

    Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b> by Zhou (20184816)

    Published 2025
    “…The labeling of emotion datasets has changed from discrete to continuous. It plays an important role in the subtle research of emotions in fields such as emotional computing, human-computer alignment, humanoid robots, and psychology.…”
  18. 178

    CNG-ARCO-RADAR.pdf by Alfonso Ladino (21447002)

    Published 2025
    “…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …”
  19. 179

    “Genie Replication Package: Resolution of Kryptos K4 via Berlin Clock Route and Substitution Funnel” by Alan Glanz (22109698)

    Published 2025
    “…</li></ul></li></ol><h3>Contributions</h3><ul><li>Provides a <b>self-contained Python package</b> enabling independent replication and stress-testing of the solution.…”
  20. 180

    kececilayout by Mehmet Keçeci (14301782)

    Published 2025
    “…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”